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Logic Variables and Functions

Logic Variable

A logic variable takes on one of two values: 0 (false) or 1 (true).
We denote the set of Boolean values by 𝔹 = {0, 1}

Logic Function

A logic function takes one or more logic variables as inputs and returns 0 or 1:

𝐹 ∶ 𝔹 × 𝔹…× 𝔹 → 𝔹
𝑥0, 𝑥1,… , 𝑥𝑛 → 𝑦 = 𝐹(𝑥0, 𝑥1,… , 𝑥𝑛)
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Hardware Implementation of Logic Variables

In hardware, to represent the two values of a logic variable, we use:

2 different voltages (0 V/5 V, -12 V/+12 V…)
2 different electric currents
Presence/absence of light in an optical fiber
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Representation of Logic Functions

A logic function can be represented in different ways:

With a truth table: table that lists the value of the function for all possible inputs
With an equation
With a diagram: a graphical representation using normalized symbols
Using an Hardware Description Language (HDL): a computer language designed to be easily
interpreted by a computer program
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Combinational and Sequential Logic

Combinational Logic

The output depends only on the present value of the inputs

∀𝑡, 𝑦(𝑡) = 𝐹(𝑥0(𝑡), 𝑥1(𝑡),… , 𝑥𝑛(𝑡))

Sequential logic

The output depends on the present value of the input and on the sequence of past inputs

𝑦(𝑡) = 𝐹(𝑥0(𝑡), 𝑥1(𝑡),… , 𝑥𝑛(𝑡), 𝑥0(𝑡 − 1), 𝑥1(𝑡 − 1)… )
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Basic Logic Gates
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NOT (Inverter)

e s 𝑠 = 𝑒
e s

0 1
1 0
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AND

a
b s 𝑠 = 𝑎 ⋅ 𝑏

a b s

0 0 0
0 1 0
1 0 0
1 1 1

Note: 𝑥 ⋅ 0 = 0 et 𝑥 ⋅ 1 = 𝑥, so an AND gate can be use to produce, from a signal 𝑥, a signal that
equals to 𝑥 or 0 depending on a command signal
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OR

a
b s 𝑠 = 𝑎 + 𝑏

a b s

0 0 0
0 1 1
1 0 1
1 1 1

Note: 𝑥 + 0 = 𝑥 et 𝑥 + 1 = 1, so an OR gate can be use to produce, from a signal 𝑥, a signal that
equals to 𝑥 or 1 depending on a command signal
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NAND (Not AND)

a
b s 𝑠 = 𝑎 ⋅ 𝑏

a b s

0 0 1
0 1 1
1 0 1
1 1 0
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NOR (Not OR)

a
b s 𝑠 = 𝑎 + 𝑏

a b s

0 0 1
0 1 0
1 0 0
1 1 0
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XOR (Exclusive OR)

a
b s 𝑠 = 𝑎 ⊕ 𝑏

𝑠 = 𝑎 ⋅ 𝑏 + 𝑎 ⋅ 𝑏

a b s

0 0 0
0 1 1
1 0 1
1 1 0

Note: 𝑥 ⊕ 0 = 𝑥 et 𝑥 ⊕ 1 = 𝑥, so an XOR gate can be use to produce, from a signal 𝑥, a signal that
equals to 𝑥 or 𝑥 depending on a command signal

13/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



XNOR (Not Exclusive OR, Equality)

a
b s 𝑠 = 𝑎 ⊕ 𝑏

𝑠 = 𝑎 ⋅ 𝑏 + 𝑎 ⋅ 𝑏

a b s

0 0 1
0 1 0
1 0 0
1 1 1
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Boolean Algebra
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Boolean Algebra

The set 𝔹 with conjunction (𝑎 ⋅ 𝑏), disjunction (𝑎 + 𝑏), and negation(𝑎) forms a Boolean Algebra

Associativity

𝑎 + (𝑏 + 𝑐) = (𝑎 + 𝑏) + 𝑐 (AssocOr)
𝑎 ⋅ (𝑏 ⋅ 𝑐) = (𝑎 ⋅ 𝑏) ⋅ 𝑐 (AssocAnd)

Commutativity

𝑎 + 𝑏 = 𝑏 + 𝑎 (CommOr)
𝑎 ⋅ 𝑏 = 𝑏 ⋅ 𝑎 (CommAnd)

Idempotence

𝑎 + 𝑎 = 𝑎 (IdemOr)
𝑎 ⋅ 𝑎 = 𝑎 (IdemAnd)

Distributivity

𝑎 + (𝑏 ⋅ 𝑐) = (𝑎 + 𝑏) ⋅ (𝑎 + 𝑐) (DistrOr)
𝑎 ⋅ (𝑏 + 𝑐) = (𝑎 ⋅ 𝑏) + (𝑎 ⋅ 𝑐) (DistrAnd)
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More Rules

Neutral elements

𝑎 + 0 = 𝑎 (Zero)
𝑎 ⋅ 1 = 𝑎 (One)

Annihilation

𝑎 + 1 = 1 (AnnOr)
𝑎 ⋅ 0 = 0 (AnnAnd)

Absorption

𝑎 + (𝑎 ⋅ 𝑏) = 𝑎 (AbsOr)
𝑎 ⋅ (𝑎 + 𝑏) = 𝑎 (AbsAnd)

Complementary

𝑎 + 𝑎 = 1 (ComplOr)
𝑎 ⋅ 𝑎 = 0 (ComplAnd)

Double negation

𝑎 = 𝑎 (DoubleNeg)

De Morgan

𝑎 + 𝑏 = 𝑎 ⋅ 𝑏 (DeMorgan1)

𝑎 ⋅ 𝑏 = 𝑎 + 𝑏 (DeMorgan2)
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Rewriting Logic Terms by Applying Boolean Algebra Rules

Showing the equivalence of two different terms for exlusive or:

(𝑎 + 𝑏) ⋅ (𝑎 + 𝑏) by (DistrAnd)

= (𝑎 + 𝑏) ⋅ 𝑎 + (𝑎 + 𝑏) ⋅ 𝑏 by (DistrAnd)

= 𝑎 ⋅ 𝑎 + 𝑏 ⋅ 𝑎 + 𝑎 ⋅ 𝑏 + 𝑏 ⋅ 𝑏 by (ComplAnd)

= 0 + 𝑏 ⋅ 𝑎 + 𝑎 ⋅ 𝑏 + 0 by (Zero)

= 𝑏 ⋅ 𝑎 + 𝑎 ⋅ 𝑏 by (CommAnd)

= 𝑎 ⋅ 𝑏 + 𝑎 ⋅ 𝑏
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From Truth Table to Boolean Equation

Each row corresponds to a minterm

𝑎 𝑏 𝑐 minterm

0 0 0 𝑎 ⋅ 𝑏 ⋅ 𝑐
0 0 1 𝑎 ⋅ 𝑏 ⋅ 𝑐
0 1 0 𝑎 ⋅ 𝑏 ⋅ 𝑐
0 1 1 𝑎 ⋅ 𝑏 ⋅ 𝑐
1 0 0 𝑎 ⋅ 𝑏 ⋅ 𝑐
1 0 1 𝑎 ⋅ 𝑏 ⋅ 𝑐
1 1 0 𝑎 ⋅ 𝑏 ⋅ 𝑐
1 1 1 𝑎 ⋅ 𝑏 ⋅ 𝑐

Take the conjunction of minterms leading to 1

𝑎 𝑏 𝑐 𝑧
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

𝑧 = (𝑎 ⋅ 𝑏 ⋅ 𝑐) + (𝑎 ⋅ 𝑏 ⋅ 𝑐) + (𝑎 ⋅ 𝑏 ⋅ 𝑐) + (𝑎 ⋅ 𝑏 ⋅ 𝑐)
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More complex gates
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2-to-1 Multiplexer

We want to build a function that selects one of its
two inputs (𝐸0 or 𝐸1) depending on a third
“selection” input (Sel):

𝑆 = 𝐸0 if Sel = 0
𝑆 = 𝐸1 if Sel = 1

E0

E1

S

Sel

0

1
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2-to-1 Multiplexer

E0

E1

S

Sel

0

1 𝑆 = Sel ⋅ 𝐸0 + Sel ⋅ 𝐸1

Sel 𝐸0 𝐸1 𝑆
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1
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4-to-1 Multiplexer

A 4-to-1 multiplexer (4 inputs so 2 selection inputs)

E3

E2

E1

E0

S

Sel0 Sel1

Can be built from 3 2-to-1 multiplexers

E3

E2

E1

E0

S

Sel0

Sel0

Sel1

𝑆 = Sel1 ⋅ Sel0 ⋅ 𝐸0 + Sel1 ⋅ 𝑆𝑒𝑙0 ⋅ 𝐸1 + 𝑆𝑒𝑙1 ⋅ Sel0 ⋅ 𝐸2 + 𝑆𝑒𝑙0 ⋅ 𝑆𝑒𝑙1 ⋅ 𝐸3
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n-to-1 Multiplexer

A n-to-1 multiplexer (with 𝑛 = 2𝑝):

needs 𝑝 selection inputs
can be built with 𝑛 − 1 2-to-1 multiplexer organized in 𝑝 layers
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Decoder

A decoder has 𝑛 inputs and 2𝑛 outputs. Only one output (selected by the value of the inputs) is at 1, all
others are at 0.

Decoder
E0

E1

S0

S1

S2

S3

𝐸0 𝐸1 𝑆3 𝑆2 𝑆1 𝑆0

0 0 0 0 0 1
0 1 0 0 1 0
1 0 0 1 0 0
1 1 1 0 0 0
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Representation of numbers
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Representation of positive integers

A positive integer 𝑁 can be represented in base 𝑏 by a vector (𝑎𝑛−1, 𝑎𝑛−2,… , 𝑎1, 𝑎0), such as:

𝑁 = 𝑎𝑛−1 ⋅ 𝑏𝑛−1 + 𝑎𝑛−2 ⋅ 𝑏𝑛−2 +…+ 𝑎1 ⋅ 𝑏1 + 𝑎0 ⋅ 𝑏0

where:

𝑎𝑖 ∈ {0, 1,… , 𝑏 − 1}
𝑎𝑛−1 is the most significant digit
𝑎0 is the least significant digit
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Commonly used bases

Decimal: 𝑏 = 10, 𝑎𝑖 ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
Hexadecimal: 𝑏 = 16, 𝑎𝑖 ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 𝐴,𝐵,𝐶,𝐷,𝐸, 𝐹}
Octal: 𝑏 = 8, 𝑎𝑖 ∈ {0, 1, 2, 3, 4, 5, 6, 7}
Binary: 𝑏 = 2, 𝑎𝑖 ∈ {0, 1}
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Binary representation of positive integers

A positive integer 𝑁 can be represented in base 2 by a vector (𝑎𝑛−1, 𝑎𝑛−2,… , 𝑎1, 𝑎0), such as:

𝑁 = 𝑎𝑛−1 ⋅ 2𝑛−1 + 𝑎𝑛−2 ⋅ 2𝑛−2 +…+ 𝑎1 ⋅ 21 + 𝑎0 ⋅ 20

where:

𝑎𝑖 ∈ {0, 1}
𝑎𝑖 is a binary digit (bit)
𝑎𝑛−1 is the most significant bit
𝑎0 is the least significant bit
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Exercise

Give the binary representation of 5410
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Conversion between binary and hexadecimal representations

In base 2 (we suppose that 𝑛 is a multiple of 4):

𝑁 = 𝑎𝑛−1 ⋅ 𝑏𝑛−1 + 𝑎𝑛−2 ⋅ 𝑏𝑛−2 +…+ 𝑎1 ⋅ 𝑏1 + 𝑎0 ⋅ 𝑏0

As 24 = 16, we also have:

𝑁 =
𝑛/4−1

∑
𝑘=0

(𝑎4𝑘+3 ⋅ 8 + 𝑎4𝑘+2 ⋅ 4 + 𝑎4𝑘+1 ⋅ 2 + 𝑎4𝑘) ⋅ 16𝑘

So it is easy to convert between hexadecimal and binary representation (each hexadecimal digit
corresponds to 4 bits). In addition, the hexadecimal representation is more compact than the binary
representation.
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Exercise

Convert 7𝐴16 in binary
Convert 111111002 in hexadecimal
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Binary representation

In a digital circuit (a processor for instance), the number of bits used for representing numbers is limited.

For 𝑛 bits:

There are 2𝑛 values that can be represented
We can represent numbers in [0, 2𝑛 − 1]
Arithmetic is performed modulo 2𝑛
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Binary representation

With 4 bits, we can represent numbers from 0
to 15 = 24 − 1
The arithmetic is modulo 24 = 16:

• 15 + 1 = 0
• 0 − 1 = 15

Decimal Binary

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111

Decimal Binary

8 1000
9 1001
10 1010
11 1011
12 1100
13 1101
14 1110
15 1111
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Representation of integers

With 4 bits, we can represent numbers from 0
to 15 = 24 − 1
The arithmetic is modulo 24 = 16:

• 15 + 1 = 0
• 0 − 1 = 15

How to keep the same behaviour and
represent negative and positive integers?

Decimal Binary

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111

Decimal Binary

8 1000
9 1001
10 1010
11 1011
12 1100
13 1101
14 1110
15 1111
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Representation of integers

With 4 bits, we can represent numbers from 0
to 15 = 24 − 1
The arithmetic is modulo 24 = 16:

• 15 + 1 = 0
• 0 − 1 = 15

We can interpret 1111 as -1 instead of 15

Decimal Binary

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111

Decimal Binary

8 1000
9 1001
10 1010
11 1011
12 1100
13 1101
14 1110
-1 1111
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Representation of integers

With 4 bits, we can represent numbers from 0
to 15 = 24 − 1
The arithmetic is modulo 24 = 16:

• 15 + 1 = 0
• 0 − 1 = 15

We can interpret half the numbers as
negatives

Decimal Binary

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111

Decimal Binary

-8 1000
-7 1001
-6 1010
-5 1011
-4 1100
-3 1101
-2 1110
-1 1111
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Representation of integers

0000
000100
1000

11

01
00

01
01

01
10

0111

1000
1001 1010 1011

1100
1101

1110

1111

0

1

2

3

45

6

7

8

9

10

11 12

13

14

15

+1

−1
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Representation of integers

0000
000100
1000

11

01
00

01
01

01
10

0111

1000
1001 1010 1011

1100
1101

1110

1111

0

1

2

3

45

6

7

8

9

10

11 12

13

14

15

0

1

2

3

4

5

6

7

−8

−7

−6

−
5 −

4

−
3

−2

−1

+1

−1
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Two’s complement

The two’s complement is a way to represent signed numbers (it is the most commonly used but not the
only one)

The most significant bit holds an information about the sign (0: positive, 1: negative)

The value 𝐴 of an n-bit integer 𝑎𝑁−1𝑎𝑁−2 …𝑎0 in two’s complement is:

𝐴 = −𝑎𝑛−12𝑛−1 +
𝑛−2
∑
𝑖=0

𝑎𝑖2𝑖

The two’s complement can represent integers in the range [−2𝑛−1, 2𝑛−1 − 1]
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Exercises

Represent -8 and +8 in two’s complement
• Using 4 bits
• Using 5 bits

Represent -1
• Using 1 bit
• Using 2 bits
• Using 3 bits
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Sign extension

If 𝑁 = 𝑎𝑛−1, 𝑎𝑛−2,… , 𝑎0 a signed integer represented in two’s complement with 𝑛 bits, how to
represent 𝑁 with 𝑛 + 1 bits?

𝑁 = −𝑎𝑛−12𝑛−1 +
𝑛−2
∑
𝑖=0

𝑎𝑖2𝑖 = −𝑎𝑛−12𝑛−1 ⋅ (2 − 1) +
𝑛−2
∑
𝑖=0

𝑎𝑖2𝑖 = −𝑎𝑛−12𝑛 +
𝑛−1
∑
𝑖=0

𝑎𝑖2𝑖

So 𝑁 = 𝑎𝑛−1, 𝑎𝑛−1, 𝑎𝑛−2,… , 𝑎0 with 𝑛 + 1 bits: the most significant bit is duplicated
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Additive inverse/The opposite

If 𝑁 is a signed integer represented in two’s complement with 𝑛 bits, and if −𝑁 can be represented in
two’s complement with 𝑛 bits:

−𝑁 = 𝑁+ 1
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The opposite (proof)

𝑁 = −𝑎𝑛−12𝑛−1 +
𝑛−2
∑
𝑖=0

𝑎𝑖2𝑖

−𝑁 = 𝑎𝑛−12𝑛−1 −
𝑛−2
∑
𝑖=0

𝑎𝑖2𝑖

= 𝑎𝑛−12𝑛−1 +
𝑛−2
∑
𝑖=0

(−𝑎𝑖)2𝑖

If 𝑏 is a bit, (1 − 𝑏 = 𝑏) or (−𝑏 = −1 + 𝑏), so:

−𝑁 = 𝑎𝑛−12𝑛−1 +
𝑛−2
∑
𝑖=0

(−1 + 𝑎𝑖)2𝑖
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The opposite (proof)

−𝑁 = 𝑎𝑛−12𝑛−1 −
𝑛−2
∑
𝑖=0

2𝑖 +
𝑛−2
∑
𝑖=0

𝑎𝑖2𝑖

= 𝑎𝑛−12𝑛−1 − (2𝑛−1 − 1) +
𝑛−2
∑
𝑖=0

𝑎𝑖2𝑖

= (𝑎𝑛−1 − 1)2𝑛−1 +
𝑛−2
∑
𝑖=0

𝑎𝑖2𝑖 + 1

= −𝑎𝑛−12𝑛−1 +
𝑛−2
∑
𝑖=0

𝑎𝑖2𝑖 + 1

= 𝑁+ 1
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Arithmetic operators
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Addition

Do the addition of two 4-bit numbers
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Addition

The addition of two binary numbers can be decomposed into several elementary addition on 1 bit.
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Ripple-carry adder (carry-propagate adder)

+

S

A B re

r
4

4 4
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Ripple-carry adder

+
si

ai bi

riri+1

a0 b0

s0

+
si

ai bi

riri+1

a1 b1

s1

+
si

ai bi

riri+1

a2 b2

s2

+
si

ai bi

riri+1

a3 b3

s3

r0

r1r2r3

r4
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Full adder (1 bit)

Arithmetically: 𝑎𝑖 + 𝑏𝑖 + 𝑟𝑖 = 2 ⋅ 𝑟𝑖+1 + 𝑠𝑖

𝑎𝑖 𝑏𝑖 𝑟𝑖 𝑟𝑖+1 𝑠𝑖 Decimal

0 0 0 0 0 0
0 0 1 0 1 1
0 1 0 0 1 1
0 1 1 1 0 2
1 0 0 0 1 1
1 0 1 1 0 2
1 1 0 1 0 2
1 1 1 1 1 3
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Full adder (1 bit)

𝑠𝑖 = 𝑎𝑖 ⊕ 𝑏𝑖 ⊕ 𝑟𝑖

𝑟𝑖+1 = 𝑎𝑖 ⋅ 𝑏𝑖 + 𝑎𝑖 ⋅ 𝑟𝑖 + 𝑏𝑖 ⋅ 𝑟𝑖

si
ai

bi

ri

ri+1
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Addition (natural integers)

If 𝐴 and 𝐵 are two natural integers represented with 𝑛 bits:

𝐴 ≤ 2𝑛 − 1
𝐵 ≤ 2𝑛 − 1

𝐴 +𝐵 ≤ 2𝑛+1 − 2 < 2𝑛+1

So the result of 𝐴+𝐵 can always be represented with 𝑛 + 1 bits
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Addition (two’s complement)

If 𝐴 and 𝐵 are two integers represented in two’s complement with 𝑛 bits:

−2𝑛−1 ≤ 𝐴 ≤ 2𝑛−1 − 1
−2𝑛−1 ≤ 𝐵 ≤ 2𝑛−1 − 1
−2𝑛 ≤ 𝐴+𝐵 ≤ 2𝑛 − 2 < 2𝑛

So the result of 𝐴+𝐵 can always be represented with 𝑛 + 1 bits
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Addition (two’s complement)

Addition of two integers represented on 3 bits:

unsigned 2′𝑠𝐶
1 1 1 7 −1

+ 0 0 1 1 1
= 1 0 0 0 8 0 or − 8?

unsigned 2′𝑠𝐶
0 1 1 3 3

+ 0 0 1 1 1
= 1 1 0 0 4 −4 or + 4?

unsigned 2′𝑠𝐶
1 1 1 7 −1

+ 1 0 0 4 −4
= 1 0 1 1 11 +3 or − 5?

55/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



Addition (two’s complement)

There is an issue with the interpretation of the carry in two’s complement.

The simple solution to always have the correct answer is to sign extend the operands to one more bit
and then do the addition. The resulting carry can be discarded.

1 1 1 1 −1
+ 1 1 0 0 −4
= �1 1 0 1 1 −5

1 1 1 1 −1
+ 0 0 0 1 1
= �1 0 0 0 0 0
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Propagation time
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Propagation time of a gate

When the input of a gate changes, its output cannot change instantaneously.

The propagation time is the time between the instant when the inputs of a gate change and the
instant when the output of the gate stabilizes to the correct value.

During this time, the output of a gate may be invalid (with regards to the current value of its inputs).
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Example
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Propagation time of a complex function

For a given technology, the propagation times of basic gates are given
From these values, we can compute the propagation time of more complex functions by adding
the individual propagation time
The propagation time of a complex function is the propagation time on the longest path
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Example: full adder

si
ai

bi

ri

ri+1

We consider the following propagation times:
• AND and OR gates: 1 ns
• XOR gates: 2 ns

What is the propagation time from each inputs
to each output?
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