
From Boolean Algebra to Arithmetics
ECE_3TC31_TP/INF107

Tarik Graba Ulrich Kühne Guillaume Duc
2024



Boolean Algebra

2/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



Logic Variables and Functions

Logic Variable

A logic variable takes on one of two values: 0 (false) or 1 (true).
We denote the set of Boolean values by 𝔹 = {0, 1}

Logic Function

A logic function takes one or more logic variables as inputs and returns 0 or 1:

𝐹 ∶ 𝔹 × 𝔹…× 𝔹 → 𝔹
𝑥0, 𝑥1,… , 𝑥𝑛 → 𝑦 = 𝐹(𝑥0, 𝑥1,… , 𝑥𝑛)

3/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



Hardware Implementation of Logic Variables

In hardware, to represent the two values of a logic variable, we use:

2 different voltages (0 V/5 V, -12 V/+12 V…)
2 different electric currents
Presence/absence of light in an optical fiber

4/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



Representation of Logic Functions

A logic function can be represented in different ways:

With a truth table: table that lists the value of the function for all possible inputs
With an equation
With a diagram: a graphical representation using normalized symbols
Using an Hardware Description Language (HDL): a computer language designed to be easily
interpreted by a computer program

5/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



Combinational and Sequential Logic

Combinational Logic

The output depends only on the present value of the inputs

∀𝑡, 𝑦(𝑡) = 𝐹(𝑥0(𝑡), 𝑥1(𝑡),… , 𝑥𝑛(𝑡))

Sequential logic

The output depends on the present value of the input and on the sequence of past inputs

𝑦(𝑡) = 𝐹(𝑥0(𝑡), 𝑥1(𝑡),… , 𝑥𝑛(𝑡), 𝑥0(𝑡 − 1), 𝑥1(𝑡 − 1)… )

6/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



Basic Logic Gates

7/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



NOT (Inverter)

e s 𝑠 = 𝑒
e s

0 1
1 0

8/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



AND

a
b s 𝑠 = 𝑎 ⋅ 𝑏

a b s

0 0 0
0 1 0
1 0 0
1 1 1

Note: 𝑥 ⋅ 0 = 0 et 𝑥 ⋅ 1 = 𝑥, so an AND gate can be use to produce, from a signal 𝑥, a signal that
equals to 𝑥 or 0 depending on a command signal

9/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



OR

a
b s 𝑠 = 𝑎 + 𝑏

a b s

0 0 0
0 1 1
1 0 1
1 1 1

Note: 𝑥 + 0 = 𝑥 et 𝑥 + 1 = 1, so an OR gate can be use to produce, from a signal 𝑥, a signal that
equals to 𝑥 or 1 depending on a command signal

10/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



NAND (Not AND)

a
b s 𝑠 = 𝑎 ⋅ 𝑏

a b s

0 0 1
0 1 1
1 0 1
1 1 0

11/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



NOR (Not OR)

a
b s 𝑠 = 𝑎 + 𝑏

a b s

0 0 1
0 1 0
1 0 0
1 1 0

12/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



XOR (Exclusive OR)

a
b s 𝑠 = 𝑎 ⊕ 𝑏

𝑠 = 𝑎 ⋅ 𝑏 + 𝑎 ⋅ 𝑏

a b s

0 0 0
0 1 1
1 0 1
1 1 0

Note: 𝑥 ⊕ 0 = 𝑥 et 𝑥 ⊕ 1 = 𝑥, so an XOR gate can be use to produce, from a signal 𝑥, a signal that
equals to 𝑥 or 𝑥 depending on a command signal

13/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



XNOR (Not Exclusive OR, Equality)

a
b s 𝑠 = 𝑎 ⊕ 𝑏

𝑠 = 𝑎 ⋅ 𝑏 + 𝑎 ⋅ 𝑏

a b s

0 0 1
0 1 0
1 0 0
1 1 1

14/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



Boolean Algebra

15/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



Boolean Algebra

The set 𝔹 with conjunction (𝑎 ⋅ 𝑏), disjunction (𝑎 + 𝑏), and negation(𝑎) forms a Boolean Algebra

Associativity

𝑎 + (𝑏 + 𝑐) = (𝑎 + 𝑏) + 𝑐 (AssocOr)
𝑎 ⋅ (𝑏 ⋅ 𝑐) = (𝑎 ⋅ 𝑏) ⋅ 𝑐 (AssocAnd)

Commutativity

𝑎 + 𝑏 = 𝑏 + 𝑎 (CommOr)
𝑎 ⋅ 𝑏 = 𝑏 ⋅ 𝑎 (CommAnd)

Idempotence

𝑎 + 𝑎 = 𝑎 (IdemOr)
𝑎 ⋅ 𝑎 = 𝑎 (IdemAnd)

Distributivity

𝑎 + (𝑏 ⋅ 𝑐) = (𝑎 + 𝑏) ⋅ (𝑎 + 𝑐) (DistrOr)
𝑎 ⋅ (𝑏 + 𝑐) = (𝑎 ⋅ 𝑏) + (𝑎 ⋅ 𝑐) (DistrAnd)

16/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



More Rules

Neutral elements

𝑎 + 0 = 𝑎 (Zero)
𝑎 ⋅ 1 = 𝑎 (One)

Annihilation

𝑎 + 1 = 1 (AnnOr)
𝑎 ⋅ 0 = 0 (AnnAnd)

Absorption

𝑎 + (𝑎 ⋅ 𝑏) = 𝑎 (AbsOr)
𝑎 ⋅ (𝑎 + 𝑏) = 𝑎 (AbsAnd)

Complementary

𝑎 + 𝑎 = 1 (ComplOr)
𝑎 ⋅ 𝑎 = 0 (ComplAnd)

Double negation

𝑎 = 𝑎 (DoubleNeg)

De Morgan

𝑎 + 𝑏 = 𝑎 ⋅ 𝑏 (DeMorgan1)

𝑎 ⋅ 𝑏 = 𝑎 + 𝑏 (DeMorgan2)

17/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



Rewriting Logic Terms by Applying Boolean Algebra Rules

Showing the equivalence of two different terms for exlusive or:

(𝑎 + 𝑏) ⋅ (𝑎 + 𝑏) by (DistrAnd)

= (𝑎 + 𝑏) ⋅ 𝑎 + (𝑎 + 𝑏) ⋅ 𝑏 by (DistrAnd)

= 𝑎 ⋅ 𝑎 + 𝑏 ⋅ 𝑎 + 𝑎 ⋅ 𝑏 + 𝑏 ⋅ 𝑏 by (ComplAnd)

= 0 + 𝑏 ⋅ 𝑎 + 𝑎 ⋅ 𝑏 + 0 by (Zero)

= 𝑏 ⋅ 𝑎 + 𝑎 ⋅ 𝑏 by (CommAnd)

= 𝑎 ⋅ 𝑏 + 𝑎 ⋅ 𝑏

18/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



From Truth Table to Boolean Equation

Each row corresponds to a minterm

𝑎 𝑏 𝑐 minterm

0 0 0 𝑎 ⋅ 𝑏 ⋅ 𝑐
0 0 1 𝑎 ⋅ 𝑏 ⋅ 𝑐
0 1 0 𝑎 ⋅ 𝑏 ⋅ 𝑐
0 1 1 𝑎 ⋅ 𝑏 ⋅ 𝑐
1 0 0 𝑎 ⋅ 𝑏 ⋅ 𝑐
1 0 1 𝑎 ⋅ 𝑏 ⋅ 𝑐
1 1 0 𝑎 ⋅ 𝑏 ⋅ 𝑐
1 1 1 𝑎 ⋅ 𝑏 ⋅ 𝑐

Take the conjunction of minterms leading to 1

𝑎 𝑏 𝑐 𝑧
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

𝑧 = (𝑎 ⋅ 𝑏 ⋅ 𝑐) + (𝑎 ⋅ 𝑏 ⋅ 𝑐) + (𝑎 ⋅ 𝑏 ⋅ 𝑐) + (𝑎 ⋅ 𝑏 ⋅ 𝑐)

19/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



More complex gates

20/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



2-to-1 Multiplexer

We want to build a function that selects one of its
two inputs (𝐸0 or 𝐸1) depending on a third
“selection” input (Sel):

𝑆 = 𝐸0 if Sel = 0
𝑆 = 𝐸1 if Sel = 1

E0

E1

S

Sel

0

1

21/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



2-to-1 Multiplexer

E0

E1

S

Sel

0

1 𝑆 = Sel ⋅ 𝐸0 + Sel ⋅ 𝐸1

Sel 𝐸0 𝐸1 𝑆
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

22/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



4-to-1 Multiplexer

A 4-to-1 multiplexer (4 inputs so 2 selection inputs)

E3

E2

E1

E0

S

Sel0 Sel1

Can be built from 3 2-to-1 multiplexers

E3

E2

E1

E0

S

Sel0

Sel0

Sel1

𝑆 = Sel1 ⋅ Sel0 ⋅ 𝐸0 + Sel1 ⋅ 𝑆𝑒𝑙0 ⋅ 𝐸1 + 𝑆𝑒𝑙1 ⋅ Sel0 ⋅ 𝐸2 + 𝑆𝑒𝑙0 ⋅ 𝑆𝑒𝑙1 ⋅ 𝐸3

23/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



n-to-1 Multiplexer

A n-to-1 multiplexer (with 𝑛 = 2𝑝):

needs 𝑝 selection inputs
can be built with 𝑛 − 1 2-to-1 multiplexer organized in 𝑝 layers

24/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



Decoder

A decoder has 𝑛 inputs and 2𝑛 outputs. Only one output (selected by the value of the inputs) is at 1, all
others are at 0.

Decoder
E0

E1

S0

S1

S2

S3

𝐸0 𝐸1 𝑆3 𝑆2 𝑆1 𝑆0

0 0 0 0 0 1
0 1 0 0 1 0
1 0 0 1 0 0
1 1 1 0 0 0

25/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



Representation of numbers

26/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



Representation of positive integers

A positive integer 𝑁 can be represented in base 𝑏 by a vector (𝑎𝑛−1, 𝑎𝑛−2,… , 𝑎1, 𝑎0), such as:

𝑁 = 𝑎𝑛−1 ⋅ 𝑏𝑛−1 + 𝑎𝑛−2 ⋅ 𝑏𝑛−2 +…+ 𝑎1 ⋅ 𝑏1 + 𝑎0 ⋅ 𝑏0

where:

𝑎𝑖 ∈ {0, 1,… , 𝑏 − 1}
𝑎𝑛−1 is the most significant digit
𝑎0 is the least significant digit

27/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



Commonly used bases

Decimal: 𝑏 = 10, 𝑎𝑖 ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
Hexadecimal: 𝑏 = 16, 𝑎𝑖 ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 𝐴,𝐵,𝐶,𝐷,𝐸, 𝐹}
Octal: 𝑏 = 8, 𝑎𝑖 ∈ {0, 1, 2, 3, 4, 5, 6, 7}
Binary: 𝑏 = 2, 𝑎𝑖 ∈ {0, 1}

28/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



Binary representation of positive integers

A positive integer 𝑁 can be represented in base 2 by a vector (𝑎𝑛−1, 𝑎𝑛−2,… , 𝑎1, 𝑎0), such as:

𝑁 = 𝑎𝑛−1 ⋅ 2𝑛−1 + 𝑎𝑛−2 ⋅ 2𝑛−2 +…+ 𝑎1 ⋅ 21 + 𝑎0 ⋅ 20

where:

𝑎𝑖 ∈ {0, 1}
𝑎𝑖 is a binary digit (bit)
𝑎𝑛−1 is the most significant bit
𝑎0 is the least significant bit

29/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



Exercise

Give the binary representation of 5410

30/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



Conversion between binary and hexadecimal representations

In base 2 (we suppose that 𝑛 is a multiple of 4):

𝑁 = 𝑎𝑛−1 ⋅ 𝑏𝑛−1 + 𝑎𝑛−2 ⋅ 𝑏𝑛−2 +…+ 𝑎1 ⋅ 𝑏1 + 𝑎0 ⋅ 𝑏0

As 24 = 16, we also have:

𝑁 =
𝑛/4−1

∑
𝑘=0

(𝑎4𝑘+3 ⋅ 8 + 𝑎4𝑘+2 ⋅ 4 + 𝑎4𝑘+1 ⋅ 2 + 𝑎4𝑘) ⋅ 16𝑘

So it is easy to convert between hexadecimal and binary representation (each hexadecimal digit
corresponds to 4 bits). In addition, the hexadecimal representation is more compact than the binary
representation.

31/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



Exercise

Convert 7𝐴16 in binary
Convert 111111002 in hexadecimal

32/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



Binary representation

In a digital circuit (a processor for instance), the number of bits used for representing numbers is limited.

For 𝑛 bits:

There are 2𝑛 values that can be represented
We can represent numbers in [0, 2𝑛 − 1]
Arithmetic is performed modulo 2𝑛

33/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



Binary representation

With 4 bits, we can represent numbers from 0
to 15 = 24 − 1
The arithmetic is modulo 24 = 16:

• 15 + 1 = 0
• 0 − 1 = 15

Decimal Binary

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111

Decimal Binary

8 1000
9 1001
10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

34/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



Representation of integers

With 4 bits, we can represent numbers from 0
to 15 = 24 − 1
The arithmetic is modulo 24 = 16:

• 15 + 1 = 0
• 0 − 1 = 15

How to keep the same behaviour and
represent negative and positive integers?

Decimal Binary

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111

Decimal Binary

8 1000
9 1001
10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

35/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



Representation of integers

With 4 bits, we can represent numbers from 0
to 15 = 24 − 1
The arithmetic is modulo 24 = 16:

• 15 + 1 = 0
• 0 − 1 = 15

We can interpret 1111 as -1 instead of 15

Decimal Binary

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111

Decimal Binary

8 1000
9 1001
10 1010
11 1011
12 1100
13 1101
14 1110
-1 1111

36/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



Representation of integers

With 4 bits, we can represent numbers from 0
to 15 = 24 − 1
The arithmetic is modulo 24 = 16:

• 15 + 1 = 0
• 0 − 1 = 15

We can interpret half the numbers as
negatives

Decimal Binary

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111

Decimal Binary

-8 1000
-7 1001
-6 1010
-5 1011
-4 1100
-3 1101
-2 1110
-1 1111

37/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



Representation of integers

0000
000100
1000

11

01
00

01
01

01
10

0111

1000
1001 1010 1011

1100
1101

1110

1111

0

1

2

3

45

6

7

8

9

10

11 12

13

14

15

+1

−1

38/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



Representation of integers

0000
000100
1000

11

01
00

01
01

01
10

0111

1000
1001 1010 1011

1100
1101

1110

1111

0

1

2

3

45

6

7

8

9

10

11 12

13

14

15

0

1

2

3

4

5

6

7

−8

−7

−6

−
5 −

4

−
3

−2

−1

+1

−1

39/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



Two’s complement

The two’s complement is a way to represent signed numbers (it is the most commonly used but not the
only one)

The most significant bit holds an information about the sign (0: positive, 1: negative)

The value 𝐴 of an n-bit integer 𝑎𝑁−1𝑎𝑁−2 …𝑎0 in two’s complement is:

𝐴 = −𝑎𝑛−12𝑛−1 +
𝑛−2
∑
𝑖=0

𝑎𝑖2𝑖

The two’s complement can represent integers in the range [−2𝑛−1, 2𝑛−1 − 1]

40/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



Exercises

Represent -8 and +8 in two’s complement
• Using 4 bits
• Using 5 bits

Represent -1
• Using 1 bit
• Using 2 bits
• Using 3 bits

41/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



Sign extension

If 𝑁 = 𝑎𝑛−1, 𝑎𝑛−2,… , 𝑎0 a signed integer represented in two’s complement with 𝑛 bits, how to
represent 𝑁 with 𝑛 + 1 bits?

𝑁 = −𝑎𝑛−12𝑛−1 +
𝑛−2
∑
𝑖=0

𝑎𝑖2𝑖 = −𝑎𝑛−12𝑛−1 ⋅ (2 − 1) +
𝑛−2
∑
𝑖=0

𝑎𝑖2𝑖 = −𝑎𝑛−12𝑛 +
𝑛−1
∑
𝑖=0

𝑎𝑖2𝑖

So 𝑁 = 𝑎𝑛−1, 𝑎𝑛−1, 𝑎𝑛−2,… , 𝑎0 with 𝑛 + 1 bits: the most significant bit is duplicated

42/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



Additive inverse/The opposite

If 𝑁 is a signed integer represented in two’s complement with 𝑛 bits, and if −𝑁 can be represented in
two’s complement with 𝑛 bits:

−𝑁 = 𝑁+ 1

43/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



The opposite (proof)

𝑁 = −𝑎𝑛−12𝑛−1 +
𝑛−2
∑
𝑖=0

𝑎𝑖2𝑖

−𝑁 = 𝑎𝑛−12𝑛−1 −
𝑛−2
∑
𝑖=0

𝑎𝑖2𝑖

= 𝑎𝑛−12𝑛−1 +
𝑛−2
∑
𝑖=0

(−𝑎𝑖)2𝑖

If 𝑏 is a bit, (1 − 𝑏 = 𝑏) or (−𝑏 = −1 + 𝑏), so:

−𝑁 = 𝑎𝑛−12𝑛−1 +
𝑛−2
∑
𝑖=0

(−1 + 𝑎𝑖)2𝑖

44/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



The opposite (proof)

−𝑁 = 𝑎𝑛−12𝑛−1 −
𝑛−2
∑
𝑖=0

2𝑖 +
𝑛−2
∑
𝑖=0

𝑎𝑖2𝑖

= 𝑎𝑛−12𝑛−1 − (2𝑛−1 − 1) +
𝑛−2
∑
𝑖=0

𝑎𝑖2𝑖

= (𝑎𝑛−1 − 1)2𝑛−1 +
𝑛−2
∑
𝑖=0

𝑎𝑖2𝑖 + 1

= −𝑎𝑛−12𝑛−1 +
𝑛−2
∑
𝑖=0

𝑎𝑖2𝑖 + 1

= 𝑁+ 1

45/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



Arithmetic operators

46/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



Addition

Do the addition of two 4-bit numbers

47/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



Addition

The addition of two binary numbers can be decomposed into several elementary addition on 1 bit.

48/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



Ripple-carry adder (carry-propagate adder)

+

S

A B re

r
4

4 4

49/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



Ripple-carry adder

+
si

ai bi

riri+1

a0 b0

s0

+
si

ai bi

riri+1

a1 b1

s1

+
si

ai bi

riri+1

a2 b2

s2

+
si

ai bi

riri+1

a3 b3

s3

r0

r1r2r3

r4

50/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



Full adder (1 bit)

Arithmetically: 𝑎𝑖 + 𝑏𝑖 + 𝑟𝑖 = 2 ⋅ 𝑟𝑖+1 + 𝑠𝑖

𝑎𝑖 𝑏𝑖 𝑟𝑖 𝑟𝑖+1 𝑠𝑖 Decimal

0 0 0 0 0 0
0 0 1 0 1 1
0 1 0 0 1 1
0 1 1 1 0 2
1 0 0 0 1 1
1 0 1 1 0 2
1 1 0 1 0 2
1 1 1 1 1 3

51/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



Full adder (1 bit)

𝑠𝑖 = 𝑎𝑖 ⊕ 𝑏𝑖 ⊕ 𝑟𝑖

𝑟𝑖+1 = 𝑎𝑖 ⋅ 𝑏𝑖 + 𝑎𝑖 ⋅ 𝑟𝑖 + 𝑏𝑖 ⋅ 𝑟𝑖

si
ai

bi

ri

ri+1

52/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



Addition (natural integers)

If 𝐴 and 𝐵 are two natural integers represented with 𝑛 bits:

𝐴 ≤ 2𝑛 − 1
𝐵 ≤ 2𝑛 − 1

𝐴 +𝐵 ≤ 2𝑛+1 − 2 < 2𝑛+1

So the result of 𝐴+𝐵 can always be represented with 𝑛 + 1 bits

53/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



Addition (two’s complement)

If 𝐴 and 𝐵 are two integers represented in two’s complement with 𝑛 bits:

−2𝑛−1 ≤ 𝐴 ≤ 2𝑛−1 − 1
−2𝑛−1 ≤ 𝐵 ≤ 2𝑛−1 − 1
−2𝑛 ≤ 𝐴+𝐵 ≤ 2𝑛 − 2 < 2𝑛

So the result of 𝐴+𝐵 can always be represented with 𝑛 + 1 bits

54/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



Addition (two’s complement)

Addition of two integers represented on 3 bits:

unsigned 2′𝑠𝐶
1 1 1 7 −1

+ 0 0 1 1 1
= 1 0 0 0 8 0 or − 8?

unsigned 2′𝑠𝐶
0 1 1 3 3

+ 0 0 1 1 1
= 1 1 0 0 4 −4 or + 4?

unsigned 2′𝑠𝐶
1 1 1 7 −1

+ 1 0 0 4 −4
= 1 0 1 1 11 +3 or − 5?

55/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



Addition (two’s complement)

There is an issue with the interpretation of the carry in two’s complement.

The simple solution to always have the correct answer is to sign extend the operands to one more bit
and then do the addition. The resulting carry can be discarded.

1 1 1 1 −1
+ 1 1 0 0 −4
= �1 1 0 1 1 −5

1 1 1 1 −1
+ 0 0 0 1 1
= �1 0 0 0 0 0

56/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



Propagation time

57/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



Propagation time of a gate

When the input of a gate changes, its output cannot change instantaneously.

The propagation time is the time between the instant when the inputs of a gate change and the
instant when the output of the gate stabilizes to the correct value.

During this time, the output of a gate may be invalid (with regards to the current value of its inputs).

58/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



Example

e s

tp

t

e

t

s

59/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



Propagation time of a complex function

For a given technology, the propagation times of basic gates are given
From these values, we can compute the propagation time of more complex functions by adding
the individual propagation time
The propagation time of a complex function is the propagation time on the longest path

60/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics



Example: full adder

si
ai

bi

ri

ri+1

We consider the following propagation times:
• AND and OR gates: 1 ns
• XOR gates: 2 ns

What is the propagation time from each inputs
to each output?

61/1 2024 ECE_3TC31_TP/INF107 From Boolean Algebra to Arithmetics


	Boolean Algebra
	Basic Logic Gates
	Boolean Algebra
	More complex gates
	Representation of numbers
	Arithmetic operators
	Propagation time

