
Building a RISC-V Processor
ECE_3TC31_TP/INF107

Ulrich Kühne Florian Brandner Tarik Graba Guillaume Duc
2023

Introduction

2/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

Overview – Putting it all together

In this chapter, you will find answers to the following questions:

What’s inside a computer?
What does a processor do?
How to talk to a processor?
How to build a (simple) processor?

3/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

What’s inside a computer?

Figure 1: Things you typically find in a computer

4/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

The Main Board

Figure 2: Main circuit board with different components

5/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

A More Systematic View on Things

Central Processing Unit (CPU, processor)
Memory (random access memory, main
memory)
Mass storage (hard disk, SSD)
Input/output peripherals

• Keyboard
• Mouse or touchpad
• Screen display
• Audio input and output
• Network devices (WiFi, ethernet)
• Many more…

6/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

A Word on Interconnections

Components are interconncted via busses
Serial bus

• Few pins and cables
• Slow communication
• Used for external peripherals
• Examples: USB, I2C, SPI

Parallel bus
• Many pins required
• Fast communication
• Used for on-board communication
• Examples: PCI, AXI

Wireless communication
• Examples: Bluetooth, WiFi, ZigBee

7/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

The Central Processing Unit

Performs (most of) the computations
Reads data from memory or peripherals
Processes it
Sends result back to memory or peripherals

8/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

Processor Architecture

When we talk about processor architecture, this can mean different things

Instruction Set Architecture (ISA)

Determines the elementary operations (instructions) a processor can perform
𝑁 -bit architecture (𝑁 ∈ {8, 16, 32, 64, … }) refers to “natural” size of data that is processed
(register size, size of busses, …)

Micro-architecture
Refers to the internal organisation of a specific processor or a family of processors in order to
implement its ISA
The same ISA can be realized in many different ways

9/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

Some Instruction Set Architectures
ARM

• Family of ISAs developed by ARM
• Used in embedded systems (mobile and low power)

and desktop (Apple’s M1)
x86

• Family of ISAs developed by Intel (and AMD)
• Used in general purpose computing systems (desktop

and servers)
RISC-V

• Family of open standard ISAs developed by University
of California, Berkeley

• Mostly used in embedded systems
MOS 6502

• Historical 8 bit architecture
• Used in first home computers (Commodore 64, Apple II)

and game consoles (Atari)

10/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

Performance and Trade-Offs

Performance indicators of a processor

Instructions executed per second
Logic complexity (e.g. number of gates)
Power consumption
Predictability / real-time behavior
…

Different architectural trade-offs

General purpose processor (GPP)
• High average performance
• High cost and power consumption
• Poor predictability

Embedded micro-controller
• Low performance
• Low cost and power consumption
• Good predictability

11/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

The Machine Language

12/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

How to Talk to a Processor?

Figure 3: Betty Jean Jennings and Fran Bilas programming the ENIAC

13/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

How to Talk to a Processor?

Programming language
• Symbolic
• Human readable (hopefully)
• Use of variables and functions

Machine language
• Concrete low level instructions
• Machine readable
• Binary (ones and zeros)

How to close this gap?

14/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

From High Level Language to Machine Language

Figure 4: The compilation process

15/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

Compilation

Input:
int square(int x) {

return x * x;

}

int main() {

int x = square(42);

}

Output:

16/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

Assembler Code

ISA-specific
Textual representation of

• Symbolic labels
• Instructions
• Registers
• Literals

Further directives (e.g. alignment)
Fixed number of registers
No complex control flow (no loops)
Lowest human-readable level

17/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

Assembler

Input: Output:
0000000 0113 ff01 2623 0011 2423 0081 0413 0101

0000010 2823 fea4 2583 ff04 2503 ff04 0097 0000

0000020 80e7 0000 0793 0005 8513 0007 2083 00c1

0000030 2403 0081 0113 0101 8067 0000 0113 ff01

0000040 2623 0011 2423 0081 0413 0101 0513 02a0

0000050 0097 0000 80e7 0000 2823 fea4 0793 0000

0000060 8513 0007 2083 00c1 2403 0081 0113 0101

0000070 8067 0000

0000074

18/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

Instruction Classes (in RISC-V)

Arithmetic and logic instructions

Addition, subtraction
Bitwise and
Left shift
…

Memory access instructions

Load (fetch data from memory to a register)
Store (save data from a register to memory)

Control flow
Unconditional jump
Conditional branch
Call (save return address before jumping)

19/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

How to execute an instruction?

1. Read the instruction word from memory (fetch)
2. Determine the type of the instruction and its operands (decode)
3. Perform the demanded computations (execute)
4. Store the result in the requested location (write back)
5. Determine the next instruction and start again

20/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

The RISC-V Instruction Set

Fixed size of 32 bits
32 registers
Load-store architecture

• Arithmetic and logic instructions working on registers only
• Specific instructions to move data from and to memory

Reduced Instruction Set (RISC) ISA
• Few (49) instructions in the base ISA
• Few and regular instruction formats
• Allows for very small hardware implementations

Standardized extensions of base ISA
• Multiplication and division
• Floating point
• Bit manipulation
• Vector computations
• …

21/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

Example of A RISC-V Instruction

31 27 26 25 24 20 19 15 14 12 11 7 6 0
0000000 rs2 rs1 000 rd 0110011 ADD
funct7 funct3 opcode

What to do?
• opcode (register-to-register instruction)
• function fields (addition)

Where to get the operands?
• opcode (register-to-register instruction)
• rs1/rs2 (source registers)

Where to put the result?
• rd (destination register)

22/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

Building a RISC-V Processor

23/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

Basic Ingredients

Memory
Processor

• Registers
• Lots of logic…

We will ignore peripherals for now

24/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

Memory

Separate instruction and data memory (Harvard architecture)
Combinatorial read (result in the same cycle)
Synchronous write (update at rising edge)

IMemIAddr Instr
32 32

Figure 5: Instruction memory

DMem
DAddr

WData

write

RData

32

32

1

32

Figure 6: Data memory

25/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

Program Counter

32 bit Register
Stores address of current instruction
Initialised to address 0 PC

D QnIAddr IAddr
32 32

26/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

Putting things together: Fetching instructions

1. Read the instruction word from memory
2. Decode the instruction
3. Perform the demanded computations
4. Store the result
5. Determine the next instruction

Program starts at address 0 (simplification)
Fixed size instructions of 32 bits (4 bytes)
Fetch consecutive instructions

ImemP
C

++

4

Instruction
32

32

32

27/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

Doing the actual work

1. Read the instruction word from memory
2. Decode the instruction
3. Perform the demanded computations
4. Store the result
5. Determine the next instruction

What do we need?

A circuit to decode the instruction
A place to store operands and results
Arithmetic and logic operators

28/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

Register File

32 registers of 32 bit
• Register 0 hard wired to 0

Two separate read ports
One write port
Combinatorial read
Synchronous write

Register
File

Register data 1

Register data 2

Register read index 1

Register read index 2

Register write index

Write data

Write

5

5

5

32

32

32

29/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

Decoding instructions

31 27 26 25 24 20 19 15 14 12 11 7 6 0
0000000 rs2 rs1 000 rd 0110011 ADD
funct7 funct3 opcode

What to do?
• opcode (register-to-register instruction)
• function fields (addition)

Where to get the operands?
• opcode (register-to-register instruction)
• rs1/rs2 (source registers)

Where to put the result?
• rd (destination register)

30/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

R-type Instructions

31 27 26 25 24 20 19 15 14 12 11 7 6 0
funct7 rs2 rs1 funct3 rd opcode R-type

31 27 26 25 24 20 19 15 14 12 11 7 6 0
0000000 rs2 rs1 000 rd 0110011 ADD
0100000 rs2 rs1 000 rd 0110011 SUB
0000000 rs2 rs1 001 rd 0110011 SLL
0000000 rs2 rs1 010 rd 0110011 SLT
0000000 rs2 rs1 011 rd 0110011 SLTU
0000000 rs2 rs1 100 rd 0110011 XOR
0000000 rs2 rs1 101 rd 0110011 SRL
0000000 rs2 rs1 110 rd 0110011 OR
0000000 rs2 rs1 111 rd 0110011 AND

Figure 7: R-type instructions

31/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

Exercise: Encoding and Decoding Instructions

Encoding

Encode the following instructions1:
xor x8, x4, x5

sub x6, x15, x1

Decoding

Decode the following instructions2:
0x003110b3

0x007067b3

1In the assembler notation, the order of the registers is rd, rs1, rs2. The notation xi refers to the register with index 𝑖
2The prefix 0x is a common notation for numbers in hexadecimal format

32/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

Solution: Encoding and Decoding Instructions

Encoding

Encode the following instructions:
xor x8, x4, x5 # 0x00524433 (0000 0000 0101 0010 0100 0100 0011 0011)

sub x6, x15, x1 # 0x40178333 (0100 0000 0001 0111 1000 0011 0011 0011)

Decoding

Decode the following instructions3:
0x003110b3 # sll x1, x2, x3

0x007067b3 # or x15, x0, x7

3You can find an online encoder/decoder here: https://luplab.gitlab.io/rvcodecjs/
33/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

https://luplab.gitlab.io/rvcodecjs/

Decode Unit for R-type Instructions
I0

I1

I2

I3

I4

I5

I6

I7

I8

I9

I10

I11

I12

I13

I14

I15

I16

I17

I18

I19

I20

I21

I22

I23

I24

I25

I26

I27

I28

I29

I30

I31

Instruction

opcode

rd

funct3

rs1

rs2

funct7

always 01100112 (for now)

5 Register write index

5 Register read index 1

5 Register read index 2

3 ALU operation

7 ALU operation

32

34/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

Decode Unit for R-type Instructions

Instruction

[11 : 7] Register write index

[30][14 : 12]
ALU operation

[19 : 15] Register read index 1

[24 : 20]
Register read index 2

32

5

4

5

5

Decode by redirecting wires (for now)
Only need bit 6 of funct7 (bit 30 of instruction)

35/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

Decode Unit for R-type Instructions

Decode
UnitInstruction

Register read index 1

Register read index 2

Register write index

Write

ALU operation

32

5

5

5

4

36/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

Putting things together: R-type Instructions

Register
File

++

⊕⊕

n

0

Register read index 1

Register read index 2

Register write index

Write data

Write

Operation (+, −, . . .)

5

5

5

32

32

32

37/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

Putting things together: R-type Instructions

Register
File

Register read index 1

Register read index 2

Register write index

Write data

Write

Operation (+, −, . . .)

5

5

5

32

32

32

38/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

Putting things together: R-type Instructions

ImemP
C

++

4

32

32

32 Register
File

[11 : 7]

[19 : 15]

[24 : 20]

1

[30][14 : 12]

32

32

32

39/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

Putting things together: R-type Instructions

ImemP
C

++

4

32

32

32 Register
File

[11 : 7]

[19 : 15]

[24 : 20]

1

[30][14 : 12]

32

32

32

xor x8, x4, x5

0x100

0x104

0x00524433

x4

x5

x8

⊕

x4 ⊕ x5

40/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

Going Further

First working processor implementation
How to use constant values

• in computations?
• to initialise registers?

41/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

Immediate Instructions

31 27 26 25 24 20 19 15 14 12 11 7 6 0
imm[11:0] rs1 100 rd 0010011 XORI

imm funct3 opcode

Figure 8: Immediate instruction xori

New opcode 0010011

Constant encoded in instruction word
12 bit integer value ∈ [−2048, 2047]
Sign extension to 32 bits
Use register rs1 as second operand
Store result in register rd

42/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

Immediate Instructions

31 27 26 25 24 20 19 15 14 12 11 7 6 0
imm[11:0] rs1 funct3 rd opcode I-type

31 27 26 25 24 20 19 15 14 12 11 7 6 0
imm[11:0] rs1 000 rd 0010011 ADDI
imm[11:0] rs1 010 rd 0010011 SLTI
imm[11:0] rs1 011 rd 0010011 SLTIU
imm[11:0] rs1 100 rd 0010011 XORI
imm[11:0] rs1 110 rd 0010011 ORI
imm[11:0] rs1 111 rd 0010011 ANDI

0000000 shamt rs1 001 rd 0010011 SLLI
0000000 shamt rs1 101 rd 0010011 SRLI

43/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

Decoding Immediate Instructions

Instruction

[11 : 7] Register Write Index

0[14 : 12]
ALU Operation

[19 : 15] Register Read Index

[31 : 20]
Immediate operand

32

5

4

5

12

44/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

Decoding Immediate Instructions

Instruction

[11 : 7] Register Write Index

0[14 : 12]
ALU Operation Ignore bit 30!

[19 : 15] Register Read Index

[31 : 20]
Immediate operand New!

32

5

4

5

12

45/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

Decoder Unit for R-type and I-type Instructions

Decode
Unit

Instruction

Register read index 1

Register read index 2

Register write index

Write

ALU operation

ALU source

Immediate

32

5

5

5

4

32

Sign extended Immediate value
ALU source signal to select
between rs2 (1) and Immediate (0)
Implementation left as an exercise

46/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

Putting things together: R-type and I-type Data Path

ImemP
C

+

4

D
ec

od
e

32 Register
File

1

ALUsrc

0
imm

rs1

rs2

rd

write

op

47/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

What’s missing?

Why is there no subi (subtract immediate)
instruction?
Why is there no not (bitwise negation)
instrucion?

48/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

What else?

How to use data from memory?
How to store results in memory?

49/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

Load Instruction(s)

31 27 26 25 24 20 19 15 14 12 11 7 6 0
imm[11:0] rs1 010 rd 0000011 LW
offset funct3 opcode

Load word (32 bits) from memory to register rd
Address from register rs1 plus immediate offset
Similar instructions for different data sizes

• lb: load byte (8 bits)
• lh: load half-word (16 bits)

Assembler syntax: lw s0, 8(a0) loads MEM[𝑎0 + 8] in register s0

50/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

Store Instruction(s)

31 27 26 25 24 20 19 15 14 12 11 7 6 0
imm[11:5] rs2 rs1 010 imm[4:0] 0100011 SW
offset funct3 offset opcode

Store word (32 bits) to memory from register rs2
Adress from register rs1 plus immediate offset
Similar instructions for different data sizes

• sb: store byte (8 bits)
• sh: store half-word (16 bits)

Assembler syntax: sw s0, 8(a0) stores register s0 in MEM[𝑎0 + 8]

51/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

Data Path for Load/Store Instructions

Propose a data path for load and store!

DMem
DAddr

WData

write

RData

32

32

1

32

52/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

Data Path for Load/Store Instructions

ImemP
C

+

4

D
e
c
o
d
e

Register
File

1

ALUsrc

0
imm

rs1

rs2

rd

write

op

D
M

e
m

write

WData

Addr

RData
store

1

0

load

53/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

Data Path for Load/Store Instructions

New control signals load and store
New multiplexer to choose data to write
back:

• ALU result (load = 0)
• Memory read data (load = 1)

Use ALU to compute memory address offset
• ALU operation is addition
• Select immediate input (ALUsrc = 0)

Register rs2 fed to memory data input

ImemP
C

+

4

D
e
c
o
d
e

Register
File

1

ALUsrc

0
imm

rs1

rs2

rd

write

op

D
M

e
m

write

WData

Addr

RData
store

1

0

load

54/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

Adding Control Flow

How to jump to another address?
How to jump depending on a certain
condition?
How to implement loops?
How to call a function?
How to return from a function?

55/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

Conditional Branches

31 27 26 25 24 20 19 15 14 12 11 7 6 0
imm[12|10:5] rs2 rs1 100 imm[4:1|11] 1100011 BLT

offset funct3 offset opcode

Instruction blt: Branch if less than
New opcode 1100011

Tests if register rs1 is less than register rs2
Jumps to address PC + offset if condition is true
Offset in range [−4096, 4095] (LSB is always zero)

56/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

Conditional Branches

31 27 26 25 24 20 19 15 14 12 11 7 6 0
imm[12|10:5] rs2 rs1 funct3 imm[4:1|11] opcode B-type

31 27 26 25 24 20 19 15 14 12 11 7 6 0
imm[12|10:5] rs2 rs1 000 imm[4:1|11] 1100011 BEQ
imm[12|10:5] rs2 rs1 001 imm[4:1|11] 1100011 BNE
imm[12|10:5] rs2 rs1 100 imm[4:1|11] 1100011 BLT
imm[12|10:5] rs2 rs1 101 imm[4:1|11] 1100011 BGE
imm[12|10:5] rs2 rs1 110 imm[4:1|11] 1100011 BLTU
imm[12|10:5] rs2 rs1 111 imm[4:1|11] 1100011 BGEU

beq: Branch if equal
bne: Branch if not equal
blt: Branch if less than

bge: Branch if greater or equal
bltu: Branch if less than unsigned
bgeu: Branch if greater or equal unsigned

57/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

Conditional Branches

Propose a data path to implement branches!

58/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

Data Path for B-type Instructions

ImemP
C

+
4

D
e

c
o

d
e

Register
File

1

ALUsrc

0
imm

rs1

rs2

rd

write

op

D
M

e
m

write

WData

Addr

RData
store

1

0

1

0

load

b
ra

n
c
h

[0]

59/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

Data Path for B-type Instructions

New control signal branch
Use lowest bit of ALU result for condition
Choose ALU operation according to branch
condition
Multiplexer to select PC offset (4 or
immediate)

ImemP
C

+
4

D
e

c
o

d
e

Register
File

1

ALUsrc

0
imm

rs1

rs2

rd

write

op

D
M

e
m

write

WData

Addr

RData
store

1

0

1

0

load

b
ra

n
c
h

[0]

60/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

Unconditional Jump/Call

31 27 26 25 24 20 19 15 14 12 11 7 6 0
imm[20|10:1|11|19:12] rd 1101111 JAL

offset opcode

jal: jump and link
Jump to address PC + offset
Offset in range [−1.048.576, 1.048.575]
Store PC + 4 in register rd

31 27 26 25 24 20 19 15 14 12 11 7 6 0
imm[11:0] rs1 000 rd 1100111 JALR
offset funct3 opcode

jalr: jump and link register
Same as jal, with target address register rs1 plus offset

61/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

Data Path for Jump Instructions

What do we need to add in order to implement jumps (not shown in this lecture)?

62/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

Miscellaneous Instructions

Some instructions not covered in this lecture:

lui: load upper immediate (→ homework)
auipc: add upper immediate to PC (used for long jumps)
ecall, ebreak: switching privilege level (→ third part of this lecture)

63/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

RISC-V Assembler

64/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

Register Names

Reg Name Usage

x0 zero Constant zero
x1 ra Return address
x2 sp Stack pointer
x3 gp Global pointer
x4 tp Thread pointer
x5 t0 Temporary register 0
x6 t1 Temporary register 1
x7 t2 Temporary register 2
x8 s0 / fp Saved register 0 / frame pointer
x9 s1 Saved register 1
x10 a0 Function argument 0 / return value 0
x11 a1 Function argument 1 / return value 1

Reg Name Usage

x12 a2 Function argument 2
... ... …
x17 a7 Function argument 7
x18 s2 Saved register 2
... ... …
x27 s11 Saved register 11
x28 t3 Temporary register 3
... ... …
x31 t6 Temporary register 6

65/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

Pseudo Instructions

Convenient names for important use cases
Leads to more readable code

Mnemonic Usage Translated to

nop No operation addi zero, zero, 0

mv Copy register addi rd, rs, 0

not Bitwise negation xori rd, rs, -1

li Load immediate (lui +) addi
la Load address auipc + addi

j Jump jal zero

call Jump to subroutine jal ra

ret Return from subroutine jalr zero, 0(ra)

66/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

Directives

Encoding constant data

.byte 0xff: 8 bit constant value

.half 0xeeff: 16 bit constant value

.word 0xaabbccdd: 32 bit constant value

.dword 0x00112233aabbccdd: 64 bit constant value

Alignment

.align N aligns next instruction or data to address divisible by 2𝑁

Needed e.g. to align constant data to word boundaries

67/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

Labels

Labels for
• Jump and branch targets
• Beginning of functions
• Location of data

Use label instead of constant jump or
branch targets
Use label to initialise a register with an
address

foo:

addi t0, t0, 1

j foo

bar:

la a0, data

lw t0, 0(a0)

.align 2

data:

.word 0xcafe

68/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

Example Program

foo:

la s0, data # Load address of data into s0

lw a0, 0(s0) # Load word at data

lw a1, 4(s0) # Load word at data + 4

jal bar # Call function bar, save return address in ra

sw a0, 8(s0) # Store function result at data + 8

j end # jump to the end

bar:

add a0, a0, a1 # Add function arguments, save sum to a0

ret # Return to caller site (return address in ra)

.align 2 # Some data to be processed

data:

.word 0x0000cafe, 0x00010023, 0x0

end: # This is the end

nop

69/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

Summary

Different processor architecture trade-offs
Programs are compiled to machine code
Instructions are simple elementary operations
Example in this lecture: RISC-V base ISA
Fetch, decode, execute, write-back cycle
Construct data path from basic logic components
Low-level programming in assembler

70/70 2023 ECE_3TC31_TP/INF107 Building a RISC-V Processor

	Introduction
	The Machine Language
	Building a RISC-V Processor
	RISC-V Assembler

