
Part 2.3 - The C Language
ECE_3TC31_TP/INF107

Florian Brandner
2024

The Standard Library

2/1 2024 ECE_3TC31_TP/INF107 Part 2.3 - The C Language

Reporting Errors (1)

void perror(const char *s);

Most functions of the C library report errors:

Often as a special return value.
• The return value does not explain why the error occurred.

Many functions in addition set the global variable errno:
• Defined in header errno.h.
• Allows to store an error code as a number.

perror allows to print a readable error message:
• Defined in header stdio.h.
• Based on the value of errno.
• First displays the string s, provided as argument, followed by ": ", and then errno explained

https://en.cppreference.com/w/c/io/perror
https://en.cppreference.com/w/c/error/errno

3/1 2024 ECE_3TC31_TP/INF107 Part 2.3 - The C Language

https://en.cppreference.com/w/c/io/perror
https://en.cppreference.com/w/c/error/errno

Reporting Errors (2)

_Noreturn void exit(int exit_code);

Sometimes it does not make sens to continue after an error:

First the error should be reported (e.g., using perror).
Then the program should be terminated using the exit function:

• Calling this function ends the program.
• It takes an exit code as argument.
• This code has the same meaning as the return value of main.
• EXIT_FAILURE can be used to indicate an error.

Of course it is possible to call exit without an error as well.
• Use EXIT_SUCCESS in this case.

https://en.cppreference.com/w/c/program/exit

4/1 2024 ECE_3TC31_TP/INF107 Part 2.3 - The C Language

https://en.cppreference.com/w/c/program/exit

Managing Heap Memory

5/1 2024 ECE_3TC31_TP/INF107 Part 2.3 - The C Language

Memory Organization

The usual organization of the processor’s memory:
A part of the memory is reserved for the operating system.
Another part for the machine code of the program.
The rest is for storing data of the program:

• Global data, accessible all the time.
• Stack data, accessible only temporarily.
• Heap data, explicitly managed by the programmer.

How can one use heap memory?

Operating
System

Machine
Code

Global
Data

Heap
Data

Stack Data

Address 0

A
dd

re
ss

es
in

cr
ea

se

6/1 2024 ECE_3TC31_TP/INF107 Part 2.3 - The C Language

Heap Memory

Heap memory is managed explicitly by the programmer:

The compiler does not place data or code on the heap by itself.
The programmer explicitly has to:

• Allocate:
Reserve an address range on the heap, depending on the size of data to be stored.

• Free:
Free an allocated address range, when the data there is not needed any longer.

This is important so that other heap operations do not accidentally modify data there.

7/1 2024 ECE_3TC31_TP/INF107 Part 2.3 - The C Language

Heap Memory Allocation
void *malloc(size_t size);

Defined in the header stdlib.h.
Reserves an address range of the given size (in bytes):

• Returns the starting address as a pointer.
• Returns a null pointer, if the heap is full (no memory space available).

Example:

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[]) {

int *heapData = malloc(sizeof(int)*4); // Allocate an array of 4 integers on the heap.

if (!heapData) {

perror("malloc failed"); // Print error message, if any.

return EXIT_FAILURE;

}

else return EXIT_SUCCESS; // All memory is freed implicitly.

}

https://en.cppreference.com/w/c/memory/malloc
8/1 2024 ECE_3TC31_TP/INF107 Part 2.3 - The C Language

https://en.cppreference.com/w/c/memory/malloc

Freeing Heap Memory
void free(void *ptr);

Defined in the header stdlib.h.
Takes a valid heap pointer and frees it:

• Valid pointer: allocated using malloc or a similar function and not freed before.
• Otherwise the result is undefined.

Example:

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[]) {

int *heapData = malloc(sizeof(int)*4);

if (!heapData) {

perror("malloc failed"); // Print error message, if any.

return EXIT_FAILURE;

} else {

free(heapData); // Explicitly free heap data.

return EXIT_SUCCESS;

}

}

https://en.cppreference.com/w/c/memory/free
9/1 2024 ECE_3TC31_TP/INF107 Part 2.3 - The C Language

https://en.cppreference.com/w/c/memory/free

Heap Memory Reallocation
void *realloc(void *ptr, size_t new_size);

Defined in the header stdlib.h.
Takes a heap pointer and changes the size of the reserved address range:

• The new size can be smaller or larger.
• It may or may not return the same pointer.
• If the pointer changes, data is copied using the old size.

The pointer needs to be a valid heap pointer (see free).
Returns a null pointer, if the heap is full (no memory space available).
Example:

int main(int argc, char *argv[]) {

int *heapData = malloc(sizeof(int)*4);

if (heapData = realloc(heapData, sizeof(int))) { // Free some space, but not all.

perror("realloc failed");

return EXIT_FAILURE;

}

return EXIT_SUCCESS;

}

https://en.cppreference.com/w/c/memory/realloc
10/1 2024 ECE_3TC31_TP/INF107 Part 2.3 - The C Language

https://en.cppreference.com/w/c/memory/realloc

File Input and Output

11/1 2024 ECE_3TC31_TP/INF107 Part 2.3 - The C Language

Manipulating Files

Files are managed by the operating system (OS):

One has to tell the OS, which files will be manipulated and how.
Opening a file:
Tell the OS that a file is going to be manipulated.
Closing a file:
Tell the OS that the program no longer manipulates the file.
File operations:
Tell the OS that the file will be read and/or (over-)written.

The C standard library provide a higher-level API for manipulating files, based on the abstraction of
(buffered) I/O streams.

12/1 2024 ECE_3TC31_TP/INF107 Part 2.3 - The C Language

Opening a File (1)

FILE *fopen(const char *filename, const char *mode);

Defined in the header stdio.h.
Open the given file for input/output operations.

• filename:
The name of the file to open.

• mode:
Indicates how the file will be manipulated (see next page).

Returns a pointer to a FILE structure:
• This is called a file stream.
• The data structure itself is unspecified – programmers only manipulate the pointer.
• On error a null pointer is returned.

https://en.cppreference.com/w/c/io/fopen
https://en.cppreference.com/w/c/io/FILE

13/1 2024 ECE_3TC31_TP/INF107 Part 2.3 - The C Language

https://en.cppreference.com/w/c/io/fopen
https://en.cppreference.com/w/c/io/FILE

Opening a File (2)

Possible modes for fopen:

mode Description File exists File does not exist

"r" Reading only Read from start Error
"w" Writing only Overwrite file Create file
"a" Writing only Append at end Create file

"r+" Read/write Read/write from start Error
"w+" Read/write Overwrite file Create file
"a+" Read/write Read/write at end Create file

https://en.cppreference.com/w/c/io/fopen

14/1 2024 ECE_3TC31_TP/INF107 Part 2.3 - The C Language

https://en.cppreference.com/w/c/io/fopen

Closing a File

int fclose(FILE *stream);

Defined in the header stdio.h.
Closes the given file:

• The OS makes sure that all data is written to the storage device.
• The file can no longer be manipulated using the FILE pointer.

Returns 0 on success
• On error the constant EOF is returned.

(some negative value, often −1)

https://en.cppreference.com/w/c/io/fclose

15/1 2024 ECE_3TC31_TP/INF107 Part 2.3 - The C Language

https://en.cppreference.com/w/c/io/fclose

Special File Streams

The C library defines three special file streams:

Defined in the header stdio.h.
stdout:
A stream (aka. a FILE structure) for regular output (write only).
stderr:
A stream to report errors (write only).
stdin:
A stream to read input (read only).
These streams are opened automatically on program start.

https://en.cppreference.com/w/c/io/std_streams

16/1 2024 ECE_3TC31_TP/INF107 Part 2.3 - The C Language

https://en.cppreference.com/w/c/io/std_streams

Example: File Output (1)

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[]) {

FILE *f = fopen("output.txt", "w"); // Open/create file for writing.

if (!f) {

perror("fopen failed");

return EXIT_FAILURE;

}

else {

fprintf(f, "Hello World %d\n", 57); // Write some text into the file.

if (fclose(f)) { // Close the file.

perror("fclose failed"); // Report an error message (on stderr)

return EXIT_FAILURE;

}

return EXIT_SUCCESS;

}

}

Content of file-output.c.

17/1 2024 ECE_3TC31_TP/INF107 Part 2.3 - The C Language

Example: File Output (2)

tp-5b07-26:~/tmp> ls

file-output.c

tp-5b07-26:~/tmp> gcc -Wall -pedantic -std=c11 -O0 -g file-output.c -o file-output

tp-5b07-26:~/tmp> ls

file-output file-output.c

tp-5b07-26:~/tmp> ./file-output

tp-5b07-26:~/tmp> ls

file-output file-output.c output.txt

tp-5b07-26:~/tmp> cat output.txt

Hello World 57

18/1 2024 ECE_3TC31_TP/INF107 Part 2.3 - The C Language

Formatted File Output

int printf(const char *restrict format, ...);

int fprintf(FILE *restrict stream, const char *restrict format, ...);

int sprintf(char *restrict buffer, const char *restrict format, ...);

Same principle as plain printf:
• fprintf:

– Takes an additional file argument.
– Writes into that file.

• printf:
– Actually the same as fprintf writing to stdout.

• sprintf: takes an additional file argument.
– Takes a pointer to an array as additional argument.
– Writes into that array (buffer).

Format strings are the same.
Return value:

• Number of characters written to file/buffer.
• On error a negative number is returned.

https://en.cppreference.com/w/c/io/fprintf
19/1 2024 ECE_3TC31_TP/INF107 Part 2.3 - The C Language

https://en.cppreference.com/w/c/io/fprintf

Format Strings Revisited (1)
'%' <flags>? <width>? ('.' <width>?) <size modifier>? <format>

width:
An integer number or '*'

• For strings: Indicates the Number of characters to display.
• For numbers: Number of digits to display (before or after the '.').

flags:
On ore more of the following control characters:

Control Character Description

'-' Align printed text to the left (see width).
'+' Always display sign symbol (+) also for positive numbers.
' ' Print a space instead of sign for positive numbers.
'0' Padding with '0' characters instead of spaces (' ').

20/1 2024 ECE_3TC31_TP/INF107 Part 2.3 - The C Language

Format Strings Revisited (2)

modifier:
Indicate the type of integer and floating-point numbers to print.

Control String Description

(default) Expect a value of type int when printing numbers.
"hh" Expect type signed char/unsigned char.
"h" Expect type short/unsigned short.
"l" Expect type long/unsigned long or wchar_t.
"ll" Expect type long long/unsigned long long.
"z" Expect type size_t.
"L" Expect type long double.

21/1 2024 ECE_3TC31_TP/INF107 Part 2.3 - The C Language

Format Strings Revisited (3)

format:

Control Character Description

'c' Displays a character symbol (use modifier).
'd' Displays a signed integer value as decimal (use modifier).
'u' Displays a unsigned integer value as decimal (use modifier).
'x' Displays an integer value as hexadecimal (use modifier).
'f' Displays an floating-point number as decimal (accepts modifier L).
'e' Displays an floating-point number in exponent notation (accepts modifier L).
's' Displays all the characters of a string.
'p' Displays the address of a pointer.

22/1 2024 ECE_3TC31_TP/INF107 Part 2.3 - The C Language

Example: Formatted Output (1)

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[])

{

short s = 540;

int i = 0xfbfb;

float f = i * 1.133e5;

static const char string[] = "|Left Aligned|";

printf("size_t:%zd\n", sizeof(int));

printf("Integer numbers (decimal): % hd and %+d\n", s, i); // Printing of sign.

printf("Integer numbers (hex): 0x%8x and 0x%08X\n", s, i); // Padding with ' ' or '0'.

printf("Floating-point numbers: %020.3f and %12.3e\n", f, f); // Width before/after '.'.

printf("String: %-20s is aligned\n", string); // Left aligned.

return EXIT_SUCCESS;

}

Content of print2.c.

23/1 2024 ECE_3TC31_TP/INF107 Part 2.3 - The C Language

Example: Formatted Output (2)

tp-5b07-26:~/tmp> ls

print2.c

tp-5b07-26:~/tmp> gcc -Wall -pedantic -std=c11 -O0 -g print2.c -o print2

tp-5b07-26:~/tmp> ls

print2 print2.c

tp-5b07-26:~/tmp> ./print2

size_t:4

Integer numbers (decimal): 540 and +64507

Integer numbers (hex): 0x 21c and 0x0000FBFB

Floating-point numbers: 0000007308643328.000 and 7.309e+09

String: |Left Aligned| is aligned

24/1 2024 ECE_3TC31_TP/INF107 Part 2.3 - The C Language

Formatted File Input

int scanf(const char *restrict format, ...);

int fscanf(FILE *restrict stream, const char *restrict format, ...);

int sscanf(const char *restrict buffer, const char *restrict format, ...);

Same principle as for printf:
• fscanf:

– Takes a file argument.
– Reads from that file depending on format string.

• scanf:
– Actually the same as fscanf reading from stdin.

• sscanf: takes an additional file argument.
– Takes a pointer to an array as argument.
– Reads from that array (buffer).

Format strings are similar, but not quite the same.
Return value:

• Number of values read successfully.
• Or EOF in case of an error.

https://en.cppreference.com/w/c/io/fscanf
25/1 2024 ECE_3TC31_TP/INF107 Part 2.3 - The C Language

https://en.cppreference.com/w/c/io/fscanf

Format Strings for Input (1)

Same basic idea as for printf:

Regular characters (except whitespace and '%'):
• Indicate that precisely such a character needs to be read.
• Otherwise an error is signaled.

Whitespace characters (e.g., ' ', '\t', '\n', …):
• Consume all available consecutive whitespaces.
• It is sufficient to indicate a single whitespace.

The '% character again has special meaning:
• It indicates that a value should be read from the file.
• Always expects an address where to store the read value, i.e., a pointer or array.

https://en.cppreference.com/w/c/io/fscanf

26/1 2024 ECE_3TC31_TP/INF107 Part 2.3 - The C Language

https://en.cppreference.com/w/c/io/fscanf

Format Strings for Input (2)

'%' '*'? <width>? <size modifier>? <format>

A preceding * indicates that the value should not be assigned to a pointer, just read.

width:
Indicates the maximum width to read (recommended particularly for strings).

size modifier:
Same as for printf, i.e., ("hh", "h", "l", "ll", "z", and L).

format:
Same as for printf, i.e., ('c', 's', 'd', 'u', 'x', f, and e).

• Reading a string with "%s" adds the null character.
– Arrays/pointers receiving a string thus need size width + 1.

• Indicating a width with "%c" reads width characters.
– No null character is added.

• Reading numbers skips leading whitespaces.

27/1 2024 ECE_3TC31_TP/INF107 Part 2.3 - The C Language

Example: Formatted Input (1)

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[]) {

FILE *f = fopen(argv[1], "r"); // Open file for reading.

if (!f) {

perror("fopen failed"); return EXIT_FAILURE;

} else {

char c, s[50];

int i;

int read = fscanf(f, "%s%d%c\n", s, &i, &c); // Read a string, an integer, and a character.

if (read != 3) {

perror("fscanf failed"); return EXIT_FAILURE;

}

printf("%s\n%d\n0x%x\n", s, i, c);

if (fclose(f)) { // Close the file.

perror("fclose failed"); return EXIT_FAILURE;

}

return EXIT_SUCCESS;

}

}

Content of file-input.c.

28/1 2024 ECE_3TC31_TP/INF107 Part 2.3 - The C Language

Example: Formatted Input (2)

tp-5b07-26:~/tmp> ls

file-input.c input.txt

tp-5b07-26:~/tmp> cat input.txt

String_without_whitespace_plus_null_character

3

a

tp-5b07-26:~/tmp> gcc -Wall -pedantic -std=c11 -O0 -g file-input.c -o file-input

tp-5b07-26:~/tmp> ls

file-input file-input.c input.txt

tp-5b07-26:~/tmp> ./file-input no-file.txt

fopen failed: No such file or directory

tp-5b07-26:~/tmp> ./file-input input.txt

String_without_whitespace_plus_null_character

3

0xa

29/1 2024 ECE_3TC31_TP/INF107 Part 2.3 - The C Language

Check Yourself!

Something (maybe) unexpected happened in the previous example.

1. Can you spot it?

Hint:
hexdump shows the content of input.txt as hexadecimal numbers (left) and characters
(right).
tp-5b07-26:~/tmp> hexdump -C input.txt

00000000 53 74 72 69 6e 67 5f 77 69 74 68 6f 75 74 5f 77 |String_without_w|

00000010 68 69 74 65 73 70 61 63 65 5f 70 6c 75 73 5f 6e |hitespace_plus_n|

00000020 75 6c 6c 5f 63 68 61 72 61 63 74 65 72 0a 33 0a |ull_character.3.|

00000030 61 0a |a.|

00000032

2. Correct the format string to get the intended behavior.

30/1 2024 ECE_3TC31_TP/INF107 Part 2.3 - The C Language

Answer

1. The character read by scanf is not the one that you might have expected:

The input file seemingly ends with a character 'a', right?
However, there are also line feed characters (see Escape Sequences).
tp-5b07-26:~/tmp> hexdump -C input.txt

00000000 53 74 72 69 6e 67 5f 77 69 74 68 6f 75 74 5f 77 |String_without_w|

00000010 68 69 74 65 73 70 61 63 65 5f 70 6c 75 73 5f 6e |hitespace_plus_n|

00000020 75 6c 6c 5f 63 68 61 72 61 63 74 65 72 0a 33 0a |ull_character.3.|

00000030 61 0a |a.|

Character read!
The form feed character ('\n', aka. 0xa) was read, not the 'a'.

2. It is sufficient to skip the whitespace(s) after reading the integer number, i.e., it suffices to insert a
space after the 'd'.

31/1 2024 ECE_3TC31_TP/INF107 Part 2.3 - The C Language

Example: Formatted Input Corrected (1)

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[]) {

FILE *f = fopen(argv[1], "r"); // Open file for reading.

if (!f) {

perror("fopen failed"); return EXIT_FAILURE;

} else {

char c, s[50];

int i;

int read = fscanf(f, "%s%d %c\n", s, &i, &c); // Read a string, an integer, and a character.

if (read != 3) {

perror("fscanf failed"); return EXIT_FAILURE;

}

printf("%s\n%d\n0x%x\n", s, i, c);

if (fclose(f)) { // Close the file.

perror("fclose failed"); return EXIT_FAILURE;

}

return EXIT_SUCCESS;

}

}

Content of file-input2.c.

32/1 2024 ECE_3TC31_TP/INF107 Part 2.3 - The C Language

Example: Formatted Input Corrected (2)

tp-5b07-26:~/tmp> ls

file-input2.c input.txt

tp-5b07-26:~/tmp> cat input.txt

String_without_whitespace_plus_null_character

3

a

tp-5b07-26:~/tmp> gcc -Wall -pedantic -std=c11 -O0 -g file-input2.c -o file-input2

tp-5b07-26:~/tmp> ls

file-input2 file-input2.c input.txt

tp-5b07-26:~/tmp> ./file-input2 no-file.txt

fopen failed: No such file or directory

tp-5b07-26:~/tmp> ./file-input2 input.txt

String_without_whitespace_plus_null_character

3

0x61

33/1 2024 ECE_3TC31_TP/INF107 Part 2.3 - The C Language

Strings

Strings are just arrays/pointers:

Comparison (==) and assignment (=):
• Do not compare/copy characters.
• Instead operate on pointers.
• May produce (maybe) confusing results:

#include <stdio.h>

int main(int argc, char *argv[]) {

char sa[] = "aaa";

char sb[] = "aaa";

// Always prints "false".

if (sa == sb)

printf("true\n");

else

printf("false\n");

return EXIT_SUCCESS;

}

#include <stdio.h>

int main(int argc, char *argv[]) {

char *sa = "aaa";

char *sb = "aaa";

// May print "true" or "false".

if (sa == sb)

printf("true\n");

else

printf("false\n");

return EXIT_SUCCESS;

}

Operator cannot be used to concatenate strings or numbers.
34/1 2024 ECE_3TC31_TP/INF107 Part 2.3 - The C Language

String Operations

int strncmp(const char* lhs, const char* rhs, size_t count);

char *strncpy(char *restrict dest, const char *restrict src, size_t count);

char *strncat(char *restrict dest, const char *restrict src, size_t count);

char *strndup(const char *src, size_t size);

Defined in header string.h.
strncmp: Compare strings by lexicographic order, at most count characters.
(returns 0 when the strings are equal, else positive or negative number).
strncpy: Copy at most count characters from one string to another.
strncat: Concatenate at most count characters of one string to another.
strndup: Makes a copy of the string by allocating a new string on the heap.

https://en.cppreference.com/w/c/string/byte/strncmp
https://en.cppreference.com/w/c/string/byte/strncpy
https://en.cppreference.com/w/c/string/byte/strncat
https://en.cppreference.com/w/c/string/byte/strndup

35/1 2024 ECE_3TC31_TP/INF107 Part 2.3 - The C Language

https://en.cppreference.com/w/c/string/byte/strncmp
https://en.cppreference.com/w/c/string/byte/strncpy
https://en.cppreference.com/w/c/string/byte/strncat
https://en.cppreference.com/w/c/string/byte/strndup

Memory Area Operations

int memcmp(const void* lhs, const void* rhs, size_t count);

void *memcpy(void *restrict dest, const void *restrict src, size_t count);

void *memset(void *dest, int c, size_t count);

Defined in header string.h.
memcmp: Compare memory areas (“byte strings”) by lexicographic order, looking at the first
count bytes.
(returns 0 when the memory areas are equal, else positive or negative number).
memcpy: Copy precisely count bytes from one area to another.
memset: Set precisely count bytes to the value of c.

https://en.cppreference.com/w/c/string/byte/memcmp
https://en.cppreference.com/w/c/string/byte/memcpy
https://en.cppreference.com/w/c/string/byte/memset

36/1 2024 ECE_3TC31_TP/INF107 Part 2.3 - The C Language

https://en.cppreference.com/w/c/string/byte/memcmp
https://en.cppreference.com/w/c/string/byte/memcpy
https://en.cppreference.com/w/c/string/byte/memset

Manipulating Addresses and Pointers

37/1 2024 ECE_3TC31_TP/INF107 Part 2.3 - The C Language

Manipulating Addresses and Pointers

In C memory addresses and pointers can be manipulated explicitly:

Casting:
• It is possible to cast integer values to pointers.

(many aspects of this are implementation-defined)
• It is possible to cast one pointer type to another.

– Casts to/from void* (e.g., as for library functions before).
– Casts to/from char* to access individual bytes.

Pointer Arithmetic:
• It is possible to address objects relative to pointers using +/- or [].
• Increment/decrement pointers.

In all cases:
• Alignment has to be respected.
• Computed addresses using pointers have to be valid.

(correspond to a global, local, or heap object)
• Otherwise the result is usually undefined.

38/1 2024 ECE_3TC31_TP/INF107 Part 2.3 - The C Language

Addresses and Array Subscripting

Access the 𝑛-th element from the start of the pointer/array:

#include <stdio.h>

// Array, stored sequentially in memory.

int array[] = {1, 2, 3, 4, 5, 6};

int main(int argc, char *argv[]) {

// Point to beginning of array.

int *ptr = array;

printf("ptr : %p\n", ptr);

printf("&ptr[2]: %p\n", &ptr[2]);

printf("ptr[2] : %d\n", ptr[2]);

return EXIT_SUCCESS;

}

tp-5b07-26:~/tmp> ./pointer-address

ptr : 0x402020

&ptr[2]: 0x402028

ptr[2] : 3

Memory layout:
64-bit Value

Address 32-bit Value 32-bit Value Value of

0x402020 0x00000001 0x00000002 array

0x402028 0x00000003 0x00000004 array

0x402030 0x00000005 0x00000006 array

… … … …
0x7f.... 0x0000000000402020 ptr

Memory computation:
0x402020 + 2 ∗ sizeof(int)

39/1 2024 ECE_3TC31_TP/INF107 Part 2.3 - The C Language

Addresses and Pointer Arithmetic

Actually is the same as array subscripting:

#include <stdio.h>

// Array, stored sequentially in memory.

int array[] = {1, 2, 3, 4, 5, 6};

int main(int argc, char *argv[]) {

// Point to beginning of array.

int *ptr = array;

printf("ptr : %p\n", ptr);

printf("ptr + 2 : %p\n", ptr + 2);

printf("*(ptr + 2): %d\n", *(ptr + 2));

return EXIT_SUCCESS;

}

tp-5b07-26:~/tmp> ./pointer-address2

ptr : 0x402020

ptr + 2 : 0x402028

*(ptr + 2): 3

Memory layout:
64-bit Value

Address 32-bit Value 32-bit Value Value of

0x402020 0x00000001 0x00000002 array

0x402028 0x00000003 0x00000004 array

0x402030 0x00000005 0x00000006 array

… … … …
0x7f.... 0x0000000000402020 ptr

Memory computation:
0x402020 + 2 ∗ sizeof(int)

40/1 2024 ECE_3TC31_TP/INF107 Part 2.3 - The C Language

Pointer Arithmetic

Array subscripting and pointer arithmetic are similar:

Compute an address relative to start of the array/pointer
• <Pointer-address> + <Index> ∗ sizeof(<Type>) or
<Pointer-address> − <Index> ∗ sizeof(<Type>)

• The computed address might be smaller or larger than the pointer’s address.
• The index is automatically scaled by the element size (sizeof).

Pointers can also be incremented or decremented
• Use the pre-/post- inc-/decrement operators (++ or --).
• The address computation is the same.
• Writes resulting address back into the pointer.

41/1 2024 ECE_3TC31_TP/INF107 Part 2.3 - The C Language

Example: Pointer Arithmetic (1)

#include <stdio.h>

#include <stdlib.h>

// Array, stored sequentially in memory.

int array[] = {1, 2, 3, 4, 5, 6};

int main(int argc, char *argv[]) {

int *ptr = array; // Point to beginning of array.

for(int i = 0; i < 3; i++) { // Increment pointer (element-wise).

printf("ptr: %p\t*ptr: ", ptr);

printf("0x%08x ", *ptr++); printf("0x%08x\n", *ptr++);

}

printf("\nbyteswise:\n"); // Increment pointer (byte-wise).

for(char *charptr = (char*)array; charptr < (char*)array + sizeof(array); charptr++)

printf("%02x", *charptr);

printf("\n");

return EXIT_SUCCESS;

}

Content of pointer-increment.c.

42/1 2024 ECE_3TC31_TP/INF107 Part 2.3 - The C Language

Example: Pointer Arithmetic (2)

tp-5b07-26:~/tmp> ls

pointer-increment.c

tp-5b07-26:~/tmp> gcc -Wall -pedantic -std=c11 -O0 -g pointer-increment.c -o pointer-increment

tp-5b07-26:~/tmp> ls

pointer-increment pointer-increment.c

tp-5b07-26:~/tmp> ./pointer-increment

ptr: 0x402030 *ptr: 0x00000001 0x00000002

ptr: 0x402038 *ptr: 0x00000003 0x00000004

ptr: 0x402040 *ptr: 0x00000005 0x00000006

byteswise:

010000000200000003000000040000000500000006000000

43/1 2024 ECE_3TC31_TP/INF107 Part 2.3 - The C Language

Check Yourself!
// Array, stored sequentially in memory.

int array[] = {1, 2, 3, 4, 5, 6};

int main(int argc, char *argv[]) {

int *ptr = array; // Point to beginning of array.

for(int i = 0; i < 3; i++) // Increment pointer (element-wise).

printf("ptr: %p\t*ptr: 0x%08x 0x%08x\n", ptr, *ptr++, *ptr++);

printf("\nbyteswise:\n"); // Increment pointer (byte-wise).

for(char *charptr = (char*)array; charptr < (char*)array + sizeof(array); charptr++)

printf("%02x", *charptr);

printf("\n");

return EXIT_SUCCESS;

}

1. This expression (char*)array + sizeof(array) seems wrong, since the index is scaled by
the element size of the pointer, i.e., the compiler should compute something like
sizeof(array) * sizeof(int). The code thus should read the memory beyond the array.
Where is the error in this reasoning?

2. There is actually something problematic in this code? Can you spot it?
44/1 2024 ECE_3TC31_TP/INF107 Part 2.3 - The C Language

Answer

1. The precedence of the cast, which is stronger than the addition, the expression thus has to be
read as ((char*)array) + sizeof(array). The reasoning from above is thus not entirely
wrong. The only issue is the element size, which is not sizeof(int) but sizeof(char), since
the pointer arithmetic operates on a char pointer.

2. The following code line is problematic:
printf("ptr: %p\t*ptr: 0x%08x 0x%08x\n", ptr, *ptr++, *ptr++);

The evaluation order of the side-effects of call arguments is unspecified.
The same variable ptr is modified twice.
Consequently, the behavior of this expression is undefined.

45/1 2024 ECE_3TC31_TP/INF107 Part 2.3 - The C Language

Lab Exercises

Work with pointers, structures, dynamic memory allocation, formatted input and output:

Find a delimiter character in an array.
• Simple pointer/array manipulation.

Define a structure and manipulate a simple structure.
• Simple pointer/structure manipulation.
• Formatted output (fprintf, …).

Read formatted data into a (static) structure.
• Formatted input and output (fscanf, fprintf, …).
• String manipulation (strndup, …).
• Error handling (perror, exit).

Manipulating a structure on the heap.
• Pointer manipulation.
• Memory management (malloc, free, realloc).

46/1 2024 ECE_3TC31_TP/INF107 Part 2.3 - The C Language

	The Standard Library
	Managing Heap Memory
	File Input and Output
	Manipulating Addresses and Pointers

