
Operating Systems — Introduction
and Processes
ECE_3TC31_TP/INF107

Stefano Zacchiroli
2024



3TC31 — Where are we in our Trip

3TC31: “from the logic gate to the operating system”

Part 1: logic gate → processor
Part 2: processor → system programs (C programming language)
Part 3: system programs → operating system ⇐ we are here

Goals of Part 3:

provide an overview of what Operating Systems (OS) do,
how OS work internally and how to implement one.

2/50 2024 ECE_3TC31_TP/INF107 Operating Systems — Introduction and Processes



What Operating Systems Do

3/50 2024 ECE_3TC31_TP/INF107 Operating Systems — Introduction and Processes



Warm-up Quiz

Q: what’s an operating system (in your own words)?
A: <your answer here>

4/50 2024 ECE_3TC31_TP/INF107 Operating Systems — Introduction and Processes



What is an Operating System? (Intuition)

A program (= software) that acts as an intermediary between a user of a computer and the
computer hardware

Operating system goals:
• Execute user programs and make solving user problems easier
• Make the computer system convenient to use
• Use the computer hardware in an efficient manner

5/50 2024 ECE_3TC31_TP/INF107 Operating Systems — Introduction and Processes



What Operating Systems Do

Depends on the point of view
• Users want convenience, ease of use and good performance
• Don’t care about resource utilization

But shared computer such as mainframe or minicomputer must keep all users happy
• Operating system is a resource allocator and control program making efficient use of hardware and

managing execution of user programs
Resources are scarce in many contexts for different reasons

• Servers: many users, need to share resources between them
• Mobile devices: optimize for battery life
• Embedded devices: limited hardware

Operating systems arbiter the allocation of scarce resources1 to demanding users, in the best possible
way.2

1Hardware resources for the most part, but also software resources.
2For some precise measure of “best”.

6/50 2024 ECE_3TC31_TP/INF107 Operating Systems — Introduction and Processes



What is an Operating System? (Definitions)

No universally accepted definition

“Everything a software vendor ships when you order an OS” is a good approximation
• But varies wildly

“The one program running at all times on the computer” is the kernel, part of the OS
Everything else is either:

• A system program3 (ships with the OS, but is not part of the kernel), or
• An application program, all programs not associated with the OS, but that rely on it for execution

Today’s OSes for general purpose and mobile computing also include middleware — a set of
software frameworks that provide additional services to application developers such as databases,
multimedia, graphics

3cf. 3TC31, part 2
7/50 2024 ECE_3TC31_TP/INF107 Operating Systems — Introduction and Processes



Basics of Computer System Structure

8/50 2024 ECE_3TC31_TP/INF107 Operating Systems — Introduction and Processes



Computer System Organization and the Bus

One or more CPUs and device controllers connect through a common system bus providing
access to a shared main memory
Concurrent execution of CPUs and devices, who are competing for memory cycles

9/50 2024 ECE_3TC31_TP/INF107 Operating Systems — Introduction and Processes



Device Controllers and Interrupts

Each device controller is in charge of a particular device type
Each device controller has a local buffer
Each device controller type has an operating system device driver (= software) to manage it
CPU moves data: main memory ↔ local buffers of controllers
I/O is from the device to local buffer of controller
Device controller informs CPU that it has finished its operation by causing an interrupt

10/50 2024 ECE_3TC31_TP/INF107 Operating Systems — Introduction and Processes



Interrupts

Interrupt transfers control to the interrupt service routine generally, through the interrupt vector,
which contains the addresses of all the service routines
Interrupt architecture must save the address of the interrupted instruction (to return to it later)
A trap or exception is a software-generated interrupt caused either by an error or a user request

• They are handled the same way than I/O interrupt
Modern operating systems are mostly interrupt-driven

11/50 2024 ECE_3TC31_TP/INF107 Operating Systems — Introduction and Processes



Interrupts (cont.)

Upon receiving an interrupt, the OS
preserves the state of the CPU by storing
the registers and the program counter (PC)
Determines which type of interrupt has
occurred
Separate segments of code determine what
action should be taken for each type of
interrupt

A typical I/O scenario hence corresponds to the
workflow shown on the right.

12/50 2024 ECE_3TC31_TP/INF107 Operating Systems — Introduction and Processes



Storage Hierarchy

Storage is organized in a hierarchy
with varying: speed, cost, volatility

• Main memory: only large
storage that CPU can access
directly

• Secondary storage: large
nonvolatile storage capacity.
Main types: hard disk drives
(HDD), non-volatile memory
(NVM)

• Tertiary storage: even larger
and slower (e.g., for backup
purposes)

13/50 2024 ECE_3TC31_TP/INF107 Operating Systems — Introduction and Processes



Storage Characteristics

14/50 2024 ECE_3TC31_TP/INF107 Operating Systems — Introduction and Processes



Caching

Important principle, performed at many levels in a computer (hardware, OS, software)
Information in use copied from slower to faster storage temporarily
Faster storage (cache) checked first to determine if information is there

• If it is (cache “hit”), information used directly from the cache (fast)
• If not (cache “miss”), data copied to cache (slow) and used from there

Cache smaller than storage being cached
• Cache management important design problem
• Cache size and replacement policy

Example

The path of an integer 𝑥 from disk to register, where the CPU can actually do something with it:

15/50 2024 ECE_3TC31_TP/INF107 Operating Systems — Introduction and Processes



How a Modern Computer Works

Modern general-purpose computers:
Implement the von Neumann
architecture, where memory
contains both data and instructions,
interpreted one way or another by
the CPU

• if the PC points to it → it’s an
instruction

Allow devices to read/write memory
directly (Direct Memory Access, or
DMA) to reduce bus contention

16/50 2024 ECE_3TC31_TP/INF107 Operating Systems — Introduction and Processes



Multiprocessor Systems

Most systems use a single general-purpose processor
• Plus several special-purpose processors, e.g., in device

controllers
Multiprocessors systems are growing in use and
importance

• Also known as parallel, tightly-coupled systems
• Advantages:

1. Increased throughput
2. Economy of scale
3. Increased reliability (e.g., fault tolerance)

Two types:
• Asymmetric multiprocessing – each processor is

assigned a special task
• Symmetric multiprocessing – each processor can

perform any task

Figure: a symmetric multiprocessing
architecture

17/50 2024 ECE_3TC31_TP/INF107 Operating Systems — Introduction and Processes



Multicore Systems

Each physical processor chip (sometime confused with
the term “CPU”) can host one or more units capable of
executing CPU instructions at a time, called core
A chip containing more than one core is called multicore
Can mix and match multiprocessor and multicore in the
same system

• E.g., current high-end laptop: 1 processor, 14 cores
• E.g., current high-end server: 4 processors, 24 cores

each
Note: only with more than one core (no matter if on the
same chip or different ones) there can be parallelism,
i.e., more than one CPU instructions executed at the
same time Figure: a single-processor, dual-core (=

two cores) architecture

18/50 2024 ECE_3TC31_TP/INF107 Operating Systems — Introduction and Processes



Multiprogramming and Multitasking

Multiprogramming (batch systems)

A single user cannot always keep CPU and I/O devices busy
Multiprogramming organizes jobs (code and data) so CPU always has one to execute
A subset of total jobs in system is kept in memory
One job selected and run via job scheduling
When job has to wait (for I/O for example), OS switches to another job

Multitasking (timesharing)
A logical extension of multiprogramming — the CPU switches jobs so frequently that users
can interact with each job while it is running, creating interactive computing

Response time should be short (<< 1 second)
Each user has at least one program executing in memory → process
If several jobs ready to run at the same time → CPU scheduling
If processes don’t fit in memory, swapping moves them in and out to run
Virtual memory allows execution of processes not completely in memory

Memory layout:
code+data of OS
and all executing
programs is in
memory.

19/50 2024 ECE_3TC31_TP/INF107 Operating Systems — Introduction and Processes



Dual-mode Operation

Dual-mode operation allows the OS to protect itself and other system components
• User mode and kernel mode

Mode bit provided by hardware
• Provides ability to distinguish when system is running user code or kernel code
• When user code is running → mode bit is “user”
• When kernel code is executing → mode bit is “kernel”

Some instructions are designated as “privileged” and only executable in kernel mode
How do we guarantee that user code does not set the mode bit to “kernel”?

• User code can requests system services only by invoking system calls (more on this later)
• System calls change mode to kernel, return from call resets it to user automatically

20/50 2024 ECE_3TC31_TP/INF107 Operating Systems — Introduction and Processes



Operating System Responsibilities

21/50 2024 ECE_3TC31_TP/INF107 Operating Systems — Introduction and Processes



Operating System Responsibilities

An operating system has several responsibilities, which we briefly present in the following. We will
expand upon most of them later in the course of 3TC31, so we will skim through them quickly for now.

Several of OS responsibilities belong to the general area of managing resources that executing
programs need:

CPU, memory, file-system, I/O

Other OS responsibilities are more general and cross-cutting, such as:

Protection and security
Virtualization

22/50 2024 ECE_3TC31_TP/INF107 Operating Systems — Introduction and Processes



Process Management

A process is a program in execution (more on this later). It is a unit of work within the system.
Process needs resources to accomplish its task

• CPU, memory, I/O, files
• Initialization data

Process termination requires reclaim of any reusable resources

OS activities for process management

Creating and terminating processes
Suspending and resuming processes
Providing mechanisms for:

• Process synchronization
• Process communication
• Deadlock handling (more on this later)

23/50 2024 ECE_3TC31_TP/INF107 Operating Systems — Introduction and Processes



Memory Management

To execute a program all (or part) of the instructions must be in memory
All (or part) of the data that is needed by the program must be in memory too
Memory management determines what is in memory and when

OS activities for memory management

Keeping track of which parts of memory are currently being used and by whom
Deciding which processes (or parts thereof) and data to move into and out of memory
Allocating and deallocating memory space as needed

24/50 2024 ECE_3TC31_TP/INF107 Operating Systems — Introduction and Processes



File-system Management

OS provides uniform, logical view of information storage:

Abstracts physical properties to logical storage unit: file
Each medium is controlled by device (i.e., disk drive, tape drive)
Files usually organized into directories
Access control to determine who can access what

OS activities for file-system management

Creating and deleting files and directories
Primitives to manipulate files and directories
Mapping files onto secondary storage
Backup files onto stable (non-volatile) storage media

25/50 2024 ECE_3TC31_TP/INF107 Operating Systems — Introduction and Processes



I/O Management

One purpose of OS is to hide peculiarities of hardware devices from the user
I/O subsystem responsible for

• Memory management of I/O including buffering (storing data temporarily while it is being transferred),
caching (storing parts of data in faster storage for performance), spooling (the overlapping of output
of one job with input of other jobs)

• General device-driver interface
• Drivers for specific hardware devices

26/50 2024 ECE_3TC31_TP/INF107 Operating Systems — Introduction and Processes



Protection and Security

Protection: any mechanism for controlling access of processes or users to resources defined by
the OS
Security: defense of the system against internal and external attacks

• Huge range, including: denial-of-service, worms, viruses, identity theft, theft of service
Systems generally first distinguish among users, to determine who can do what

• User identities (user IDs, security IDs) include name and associated number, one per user
• User ID then associated with all files, processes of that user to determine access control
• Group identifier (group ID) allows set of users to be defined and controls managed, then also

associated with each process, file
• Privilege escalation (controlled) allows user to change to effective ID with more rights

27/50 2024 ECE_3TC31_TP/INF107 Operating Systems — Introduction and Processes



Virtualization

Allows operating systems to run applications within other OSes
• Vast and growing industry

Emulation used when source CPU type different from target type (i.e., PowerPC to Intel x86)
• Generally slowest method
• When computer language not compiled to native code — Interpretation

Virtualization — OS natively compiled for CPU, running guest OS also natively compiled
• E.g., VMware running WinXP guests, each running applications, all on native WinXP host OS
• VMM (Virtual Machine Manager, part of the OS) provides virtualization services

28/50 2024 ECE_3TC31_TP/INF107 Operating Systems — Introduction and Processes



Operating System Services

29/50 2024 ECE_3TC31_TP/INF107 Operating Systems — Introduction and Processes



Operating System Services

Operating systems provide a number of services to users and running programs

Services for users:
User interfaces: CLI,
GUI, touch screen
Program execution

Services for running programs:
I/O, file-system ops.
Communication between
programs (locally or via
the network)
Resource allocation,
error detection
Accounting, protection,
security

30/50 2024 ECE_3TC31_TP/INF107 Operating Systems — Introduction and Processes



System Calls

Running programs request OS services by invoking system calls (or syscalls, for short).

Programming interface to the services provided by the OS
Typically written in a system-level language (C or C++)
Mostly accessed by programs via a high-level Application Programming Interface (API)
implemented by system libraries (e.g., the C standard library, or libc) rather than direct syscall
invocation
Common high-level APIs for syscalls:

• Win32 API for Windows
• POSIX API for UNIX systems (including Linux and Mac OS)
• (subset of) Java API for the Java Virtual Machine (JVM)

31/50 2024 ECE_3TC31_TP/INF107 Operating Systems — Introduction and Processes



System Calls — Example

Consider a program that interactively asks the user interactively for two file names and copies the
content of one file to the other. How many system call (invocations) are involved in such a task?

Try it out for yourself by running strace cp input_file output_file in a terminal.
Bottom line: a lot of what running programs do is invoking OS services.

32/50 2024 ECE_3TC31_TP/INF107 Operating Systems — Introduction and Processes



System Calls — Program, libc, OS — Example (1)
read is a standard POSIX system call that
requests the service of reading content from a
file into a memory buffer of the requesting
program (e.g., a byte array)

• (You will learn about read details later.)
The read system call can be invoked by C
programs by calling the read function
implemented in the libc
read is a blocking system call; calling
program suspends its execution, waiting for
completion

33/50 2024 ECE_3TC31_TP/INF107 Operating Systems — Introduction and Processes



System Calls — Program, libc, OS — Example (2)

Other, higher-level functions of the
C standard library (and other
libraries) are not 1-1 mappings to
system calls, but call into system
calls nonetheless
For example, printf uses write
(the complementary system call of
read) to write formatted output to
standard output (usually connected
to your terminal)
Note that user code (program and
libc) executes in user mode
whereas system call code executes
in kernel mode

34/50 2024 ECE_3TC31_TP/INF107 Operating Systems — Introduction and Processes



System Calls — User and Kernel Mode

35/50 2024 ECE_3TC31_TP/INF107 Operating Systems — Introduction and Processes



Types of System Calls

Many classes of system call exist, depending
on the type of service requested

• Process control
• File management
• Device management
• Information maintenance
• Communications
• Protection

The sets of available system calls vary across
OS
You will learn about several (UNIX) system
calls in the lab sessions of 3TC31

36/50 2024 ECE_3TC31_TP/INF107 Operating Systems — Introduction and Processes



Processes

37/50 2024 ECE_3TC31_TP/INF107 Operating Systems — Introduction and Processes



Process — Concept

An operating system executes a variety of programs that run as processes
A process is a a program in execution
Process execution must progress in sequential fashion
A process consists of multiple parts (already seen in Part 2 of 3TC31):

• The program code, also called text section
• Current activity including program counter and other processor registers
• Stack containing temporary data

– Function parameters, return addresses, local variables
• Data section containing global variables
• Heap containing memory dynamically allocated during run time

Program vs Process — Intuition

A program is a passive entity stored on disk (executable file)
A process is an active entity in execution
Program turns into a process when an executable file is loaded into memory for execution
One program can correspond to several processes (e.g., multiple users executing same program)

38/50 2024 ECE_3TC31_TP/INF107 Operating Systems — Introduction and Processes



Memory Layout of a C Program (Redux)

(Just a reminder, you’ve seen this before.)

39/50 2024 ECE_3TC31_TP/INF107 Operating Systems — Introduction and Processes



Process States

As a process executes it
changes state:

New: being created
Running: its instructions
are being executed on a
processor
Waiting: waiting for
some event to occur
(cannot be executed,
temporarily)
Ready: waiting to be
assigned to a processor
Terminated: finished
execution

Figure: process state machine

40/50 2024 ECE_3TC31_TP/INF107 Operating Systems — Introduction and Processes



Process Control Block (PCB)

The full status of a process is captured by its Process Control Block (PCB), which
contains:

Process state — running, waiting, etc.
Program counter — location of instruction to next execute
CPU registers — contents of all process-centric registers
CPU scheduling information — priorities, scheduling queue pointers
Memory-management information — memory allocated to the process
Accounting information — CPU used, clock time elapsed since start, time
limits
I/O status information — I/O devices allocated to process, list of open files

All process PCBs are maintained by the OS using dedicated data structures.

41/50 2024 ECE_3TC31_TP/INF107 Operating Systems — Introduction and Processes



Process Scheduling
Process scheduler selects among available processes for next execution on CPU core
Goal: maximize CPU use; Implementation: quickly switch processes on/off CPU core(s)
Maintains scheduling queues of processes

• Ready queue: set of all processes residing in main memory, ready and waiting to execute
• Wait queues: (plural!) set of processes waiting for an event (e.g., I/O, process termination, etc.)
• Processes migrate among the various queues as they change state

42/50 2024 ECE_3TC31_TP/INF107 Operating Systems — Introduction and Processes



Context Switch

A context switch occurs when the CPU switches
from executing one process to another.

To execute a context switch, the OS must
save the state (or “context”) of the old process
and load the saved state for the new process
Full context of a process represented in the
PCB
Context-switch time is pure overhead; the
system does no useful work while switching

• The more complex the OS and the PCB
→ the longer the context switch

Figure: context switch timeline (from top to bottom)

43/50 2024 ECE_3TC31_TP/INF107 Operating Systems — Introduction and Processes



Process Creation

Parent process create children processes, which, in turn create other processes, forming a tree
of processes
Generally, process identified and managed via a process identifier (pid)
Resource sharing options (depending on the OS):

• Parent and children share all resources
• Children share subset of parent’s resources
• Parent and child share no resources

Execution options (ditto):
• Parent and children execute concurrently
• Parent waits until children terminate

Address space options (ditto):
• Child duplicate parent’s address space
• Child has a (new) program loaded into it

44/50 2024 ECE_3TC31_TP/INF107 Operating Systems — Introduction and Processes



Process Creation on UNIX — Example

fork() system call creates new process
• Child shares some parent’s resources (e.g., open files)
• Parent and child execute concurrently
• Child duplicates parent’s address space

(optional) exec() system call used after a fork() to replace the process address space with a new
program
(optional, for coordination) Parent process calls wait() system call to wait for the child to
terminate

(More on this in the upcoming 3TC31 lab session.)

45/50 2024 ECE_3TC31_TP/INF107 Operating Systems — Introduction and Processes



Process Creation on UNIX — Example (cont.)

1 #include <stdio.h>

2 #include <sys/types.h>

3 #include <sys/wait.h>

4 #include <unistd.h>

5
6 int main() {

7 pid_t pid;

8 pid = fork(); /* create a child process */

9 if (pid < 0) { /* fork() syscall failed */

10 fprintf(stderr, "E: Fork failed.\n");

11 return 1;

12 } else if (pid == 0) { /* child process */

13 execlp("/bin/ls", "ls", NULL);

14 } else { /* parent process */

15 wait(NULL); /* parent will wait for the child to complete */

16 printf("I: Child completed.\n");

17 }

18 return 0;

19 }

46/50 2024 ECE_3TC31_TP/INF107 Operating Systems — Introduction and Processes



Process Representation in Linux — Example

In the Linux kernel, the full status of a process (PCB) is captured in a task_struct structure (defined
in include/linux/sched.h).

1 pid t_pid; /* process identifier */

2 long state; /* state of the process */

3 unsigned int time_slice; /* scheduling information */

4 struct task_struct *parent; /* this process’s parent */

5 struct list_head children; /* this process’s children */

6 struct files_struct *files; /* list of open files */

7 struct mm_struct *mm; /* address space of this process */

8 /* ... */

47/50 2024 ECE_3TC31_TP/INF107 Operating Systems — Introduction and Processes

https://github.com/torvalds/linux/blob/master/include/linux/sched.h


Interprocess Communication

Processes within a system may be independent or cooperating
Cooperating process can affect or be affected by other processes, including sharing data
Reasons for cooperating processes: information sharing, computation speedup, modularity
Cooperating processes need interprocess communication (IPC)
Two models of IPC: (a) shared memory, (b) message passing

48/50 2024 ECE_3TC31_TP/INF107 Operating Systems — Introduction and Processes



Interprocess Communication — Examples

IPC cannot happen without OS intervention
• OS services must be requested either for each communication (often the case in message passing),
• or initially to setup the communication mechanism (often the case for shared memory)

Example of UNIX / POSIX IPC mechanisms:
• Message passing: pipe, mkfifo, mq_open/mq_send/mq_receive/mq_close, socket
• Shared memory: mmap, shm_open/shm_unlink

(More on some of these in later 3TC31 lectures and lab sessions.)

49/50 2024 ECE_3TC31_TP/INF107 Operating Systems — Introduction and Processes



Reading List

You should study on books, not slides! Reading material for this lecture is:

Silberschatz, Galvin, Gagne. Operating System Concepts, Tenth Edition:
• Chapter 1: Introduction
• Chapter 2: Operating-System Structures
• Chapter 3: Processes

Credits:

Some of the material in these slides is reused (with modifications) from the official slides of the
book Operating System Concepts, Tenth Edition, as permitted by their copyright note.

50/50 2024 ECE_3TC31_TP/INF107 Operating Systems — Introduction and Processes

https://www.os-book.com/OS10/
https://www.os-book.com/OS10/slide-dir/
https://www.os-book.com/OS10/

	What Operating Systems Do
	Basics of Computer System Structure
	Operating System Responsibilities
	Operating System Services
	Processes

