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Multithreading

So far, we assumed each process had a single thread of execution (“thread” for short)
Consider now having multiple program counters per process → multithreading
OS must keep track of thread-specific data, including registers and stack

Note how, differently from processes, threads share a single address space → memory is shared
by default among all threads of the same process
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Benefits

Responsiveness – may allow continued execution if part of process is blocked, especially
important for user interfaces in interactive applications
Resource Sharing – threads share resources of process, easier than on-demand shared memory
or message passing
Economy – cheaper than process creation, thread switching has lower overhead than context
switching
Scalability – process can take advantage of multicore architectures

There are also drawbacks!
In particular it can be difficult to write correct multithreaded programs against the risk of race conditions.
We will explore this topic in the upcoming lecture about synchronization.
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Multicore Programming

On system with more than one core, multithreading may lead to multiple CPU instructions of the
same program being executed at the same time → parallelism
Beware of the difference between:

• Parallelism implies a system can perform more than one task simultaneously
• Concurrency supports more than one task making progress

– OS can give the illusion of parallelism on a single processor/core, by alternating quickly between tasks

Concurrent execution on single-core system:

Parallelism on a multi-core system:
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Pthreads

A POSIX standard (IEEE 1003.1c) API for thread creation and synchronization
Specification, not implementation
API specifies behavior of the library, implementation is up to development of the library
Common in UNIX operating systems

You will learn more about pthreads in the upcoming lab session; in the following we will just briefly walk
through a phtread hello-world-style example.
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Pthreads — Example

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <assert.h>

4 #include <pthread.h>

5 #include <unistd.h>

6
7 #define NUM_THREADS 5

8
9 void *perform_work(void *arguments){

10 int index = *((int *)arguments);

11 int sleep_time = 1 + rand() % NUM_THREADS;

12 printf("THREAD %d: Started.\n", index);

13 printf("THREAD %d: Will be sleeping for %d seconds.\n", index, sleep_time);

14 sleep(sleep_time);

15 printf("THREAD %d: Ended.\n", index);

16 return NULL;

17 }

(source)
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Pthreads — Example (cont.)
19 int main(void) {

20 pthread_t threads[NUM_THREADS];

21 int thread_args[NUM_THREADS];

22 int i;

23 int result_code;

24
25 for (i = 0; i < NUM_THREADS; i++) { // Create all threads one by one

26 printf("IN MAIN: Creating thread %d.\n", i);

27 thread_args[i] = i;

28 result_code = pthread_create(&threads[i], NULL, perform_work, &thread_args[i]);

29 assert(!result_code);

30 }

31 printf("IN MAIN: All threads are created.\n");

32
33 for (i = 0; i < NUM_THREADS; i++) { // Wait for each thread to complete

34 result_code = pthread_join(threads[i], NULL);

35 assert(!result_code);

36 printf("IN MAIN: Thread %d has ended.\n", i);

37 }

38 printf("MAIN program has ended.\n");

39 return 0;

40 }
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Pthreads — Example (cont.)
$ gcc -Wall pthreads-hello.c -o pthreads-hello -pthread

$ ./pthreads-hell

IN MAIN: Creating thread 0.

IN MAIN: Creating thread 1.

IN MAIN: Creating thread 2.

IN MAIN: Creating thread 3.

IN MAIN: Creating thread 4.

THREAD 0: Started.

THREAD 0: Will be sleeping for 4 seconds.

IN MAIN: All threads are created.

THREAD 1: Started.

THREAD 1: Will be sleeping for 2 seconds.

THREAD 2: Started.

THREAD 2: Will be sleeping for 1 seconds.

THREAD 4: Started.

THREAD 4: Will be sleeping for 3 seconds.

THREAD 3: Started.

THREAD 3: Will be sleeping for 4 seconds.

THREAD 2: Ended.

THREAD 1: Ended.

THREAD 4: Ended.

THREAD 0: Ended.

THREAD 3: Ended.

IN MAIN: Thread 0 has ended.

IN MAIN: Thread 1 has ended.

IN MAIN: Thread 2 has ended.

IN MAIN: Thread 3 has ended.

IN MAIN: Thread 4 has ended.

MAIN program has ended.
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Are Threads and Processes that Different? — The Linux Example

The Linux kernel refers to executable entities as “tasks” rather than threads or processes
As we have seen last week, process creation is requested using the fork() system call
Thread creation is requested through the clone() system call
clone() flags allow a parent to selectively share, or not, resources with its child:

Intuition (“VM” stands for “virtual memory” here):
• CLONE_VM present → “new thread”
• CLONE_VM absent → “new process”

struct task_struct (recursively) points to task data structures (shared or unique)

Bottom line: the distinction between threads and processes is not clear cut, but rather a matter of which
resources executable entities decide to share.
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Scheduling
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Reminder

We have seen in a previous lecture that:

With multiprogramming, several programs are loaded into memory at the same time
Processes pass through several states (running, waiting, ready, etc.) during their lifetimes
At any given time a maximum of one process (per CPU core) can be in execution
Scheduling is the OS activity deciding which process is in execution at a given time (on each core)
The process scheduler (or CPU scheduler) selects among available processes1 for next
execution on a given CPU core

• Ready queue: set of all processes residing in main memory, ready and waiting to execute
• Wait queues: set of processes waiting for an event
• Processes migrate among the various queues as they change state

1Actually: “threads” or, more generally, “runnable entities”. We will use “process” for simplicity in the following slides,
although what is actually scheduled are runnable entities.
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CPU and I/O Bursts
During execution a process alternates between CPU
bursts and I/O bursts

• Cycle of CPU execution and waiting for I/O
• If CPU bursts dominate performances the process is

said to be CPU bound, otherwise I/O bound
The distribution of CPU burst duration is of main concern
for scheduling decisions. Experimental results show that
there are:

• Large number of short CPU bursts
• Small number of longer CPU bursts

Figure: typical process lifetime
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CPU Scheduler

The CPU scheduler selects from among the processes in ready queue, and allocates a CPU core
to one of them

• Queue may be ordered in various ways ← important policy decision for the scheduler
CPU scheduling decisions may take place at the following state transitions:

1. running → waiting
2. running → terminates
3. running → ready
4. waiting → ready

For (1) and (2), a new process (if one exists in the ready queue) must be selected for execution.
For (3) and (4), however, there is a choice.

• If no change of scheduled process can happen → nonpreemptive scheduling
– Once the CPU has been allocated to a process, the process keeps it until waiting or termination.

• If a change of scheduled process can happen → preemptive scheduling
– The OS can “take away” (= preempt) the CPU from one process and give it to another.
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Scheduling Criteria and Goals

Several metrics are used as criteria to evaluate scheduling policies:

CPU utilization keep the CPU as busy as possible
Throughput number of processes that complete their execution per time unit

Turnaround time amount of time to execute a particular process (until completion)
Waiting time amount of time a process has been waiting in the ready queue

Response time amount of time it takes from request submission until the first response is produced

Based on these metrics, general optimization goals for the scheduler are:

Maximize CPU utilization
Maximize throughput
Minimize turnaround time
Minimize waiting time
Minimize response time

Several scheduling policies (or “algorithms”) exist, with different trade-offs.
Let’s look at the main ones.
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First Come, First Served (FCFS) Scheduling

Pure FIFO (First In, First Out) ordering of the ready queue
Nonpreemptive

Process Burst duration

𝑃1 24
𝑃2 3
𝑃3 3

Suppose processes arrive in the order: 𝑃1, 𝑃2, 𝑃3 and have CPU bursts with the above lengths.
The Gantt chart of the resulting schedule is:

Waiting times: 𝑃1 = 0, 𝑃2 = 24, 𝑃3 = 27
Average waiting time = (0 + 24 + 27)/3 = 17
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First Come, First Served (FCFS) Scheduling (Cont.)

Process Burst duration

𝑃1 24
𝑃2 3
𝑃3 3

Now suppose that the same processes arrive in the order: 𝑃2, 𝑃3, 𝑃1.
The Gantt chart for the schedule is:

Waiting times: 𝑃1 = 6, 𝑃2 = 0, 𝑃3 = 3
Average waiting time = (6 + 0 + 3)/3 = 3. Much better than before!
Convoy effect — short processes remain stuck behind long process

• Result in lower hardware resources utilization in the case of one CPU-bound and many I/O-bound
processes
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Shortest-Job-First (SJF) Scheduling

Associate with each process the length of its next CPU burst
Use these lengths to schedule processes in reverse burst length order (shortest burst first)
Nonpreemptive

Example:

Process Burst duration

𝑃1 6
𝑃2 8
𝑃3 7
𝑃4 3 Average waiting time: (3 + 16 + 9 + 0)/4 = 7

SJF is provably optimal: it gives minimum average waiting time for a given set of processes
Problem: how do we determine the length of the next CPU burst? (without knowing the future)

• Could ask the user
• Estimate based on past process statistics
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Shortest-Remaining-Time-First (SRT) Scheduling

Preemptive variant of SJF
Whenever a new process arrives in the ready queue, the decision on which process to schedule
next is redone using the SJF algorithm.

• Can result in preempting the currently running process
Is SRT “more optimal” (now that we allow preemption) than SJF in terms of the minimum average
waiting time for a given set of processes?

Process Arrival time Burst duration

𝑃1 0 8
𝑃2 1 4
𝑃3 2 9
𝑃4 3 5

Note how 𝑃1 is preempted by 𝑃2 upon its arrival
Average waiting time (SRT):
[(10 − 1) + (1 − 1) + (17 − 2) + (5 − 3)]/4 =
26/4 = 6.5
Average waiting time with SJF would have been: 7.75
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Round Robin (RR) Scheduling

Each process gets a small unit of CPU time (time quantum 𝑞), usually 10-100 milliseconds.
After this time has elapsed, the process is preempted and added to the end of the ready queue.

• Timer interrupts occur every quantum to trigger preemption + scheduling of next process.
If there are 𝑛 processes in the ready queue and the time quantum is 𝑞, then:

• Each process gets 1/𝑛 of the CPU time, in chunks of at most 𝑞 time units at once.
• No process waits more than (𝑛 − 1)𝑞 time units.

Performances depend heavily on 𝑞
• 𝑞 too large → degenerates to FCFS scheduling
• 𝑞 too small → lot of time wasted in context switches, instead of process work
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Round Robin (RR) Scheduling — Example

Process Burst duration

𝑃1 24
𝑃2 3
𝑃3 3

With 𝑞 = 4 the schedule is:

Note how 𝑃1 keeps being rescheduled after the termination of 𝑃2 and 𝑃3

Typical performances: higher average turnaround time than SJF, but better response time
𝑞 should be large compared to context switch time. Typical figures:

• 𝑞 ∈ 10-100 ms
• context switch < 10 μs
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Priority Scheduling

General class of scheduling policies
A priority number (integer) is associated with each process
CPU allocated to the process with the highest priority

• Conventionally: smallest integer → highest priority
Can be preemptive or nonpreemptive

Note: SJF is an instance of priority scheduling, where priority is the inverse of next CPU burst time

Problem: Starvation — low priority processes may never execute
Solution: Aging — as time progresses increase the priority of a waiting process; eventually it will
become “important enough” to be scheduled
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Priority Scheduling — Example

Process Burst duration Priority

𝑃1 10 3
𝑃2 1 1 (highest)
𝑃3 2 4
𝑃4 1 5 (lowest)
𝑃5 5 2

Resulting schedule with nonpreemptive priority scheduling:

Average waiting time: (0 + 1 + 6 + 16 + 18)/5 = 8.2
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Priority Scheduling with Round-Robin

Run the process with the highest priority. Processes with the same priority run round-robin.
Example:

Process Burst duration Priority

𝑃1 4 3 (lowest, ex aequo)
𝑃2 5 2
𝑃3 8 2
𝑃4 7 1 (highest)
𝑃5 3 3 (lowest, ex aequo)

Schedule for 𝑞 = 2 with RR preemption at quantum expiration:
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Multilevel Queue Scheduling

The ready queue consists of multiple queues
Multilevel queue scheduler defined by the following parameters:

• Number of queues
• Scheduling algorithms for each queue
• Method used to determine which queue a process will enter when that process needs service
• Scheduling among the queues

With priority scheduling, have separate queues for each priority.
Schedule the process in the highest-priority queue!
Queues organized either by fixed priority (left) or by process type (right):
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Multilevel Feedback Queue Scheduling

More general version of multilevel queue scheduling
Now processes can move between queues
Parameters are the same of multilevel queue scheduling (cf. previous slide), plus:

• Method used to determine when to upgrade a process (to a higher-priority queue)
• Method used to determine when to demote a process (to a lower-priority queue)

The most general and most complex scheduling algorithm
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Multilevel Feedback Queue Scheduling — Example

Three queues:
• 𝑄0 – RR with time quantum 8 milliseconds
• 𝑄1 – RR time quantum 16 milliseconds
• 𝑄2 – FCFS

Scheduling
• A new process enters queue 𝑄0 which is served in RR

– When it gains CPU, the process receives 8 milliseconds
– If it does not finish in 8 milliseconds, the process is

moved to queue 𝑄1
• At 𝑄1 job is again served in RR and receives 16

additional milliseconds
– If it still does not complete, it is preempted and moved

to queue 𝑄2
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SMP Scheduling

CPU scheduling becomes more complex when multiple CPUs/cores are available
Many different architectures to consider

• Multicore CPUs, multithreaded cores, NUMA systems, heterogeneous multiprocessing
Let’s look at a simple and common case: symmetric multiprocessing (SMP) scheduling, where
each processor is self scheduling.
Ready threads may be in a (a) common queue or (b) per-processor queues:
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SMP Scheduling — Load Balancing

With SMP, need to keep all CPUs loaded for efficiency
Load balancing attempts to keep workload evenly distributed. Two approaches:

• Push migration – periodic task checks load on each processor, and if needed moves tasks from
overloaded CPU to other CPUs

• Pull migration – idle processors can pull waiting task from a busy processor

Processor Affinity

When a thread has been running on one processor, the cache contents of that processor stores
the memory accessed by that thread.
We refer to this as a thread having affinity for a processor (i.e., “processor affinity”)
Load balancing affects processor affinity as when a thread moves from one processor to
another, it loses the contents of what it cached of the processor it was moved off of. Solutions:

• Soft affinity – the OS attempts to keep a thread running on the same processor, but no guarantees.
• Hard affinity – allows a process to specify a fixed set of processors it may run on.

More moving parts that the scheduler should take into account for its decisions!
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Case Study — Linux Scheduling
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Linux Scheduling through v2.5

Prior to kernel version 2.5, ran variation of historical UNIX scheduling algorithm
• Round Robin with priority and aging
• Problem: 𝑂(𝑛) complexity for selecting next task to run

Version 2.5 moved to the so-called O(1) scheduler
• Preemptive, priority based
• Two priority ranges: time-sharing (normal) and real-time
• Real-time range from 0 to 99; normal range from 100 to 139
• nice(1) (see man page) value from -20 to 19 added to the priority → allow manual tuning
• Result into a global priority with numerically lower values indicating higher priority
• Higher priority gets larger 𝑞
• Task runnable as long as time left in time slice (active)
• If no time left (expired), not runnable until all other tasks use their slices
• All runnable tasks tracked in per-CPU run queue data structure

Worked well, but poor response times for interactive processes
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Linux Completely Fair Scheduler (CFS)

Starting with Linux 2.6.23: completely fair scheduler (CFS)2

Configurable scheduling classes
• Two predefined scheduling classes—real-time and default—others can be added
• Each task has a specific priority
• Scheduler picks highest priority task in highest scheduling class
• Rather than quantum based on fixed time allotments, based on proportion of CPU time

Quantum calculated based on nice value from -20 to +19
• Lower value is higher priority
• Calculates target latency: interval of time during which task should run at least once
• Target latency can increase if, e.g., number of active tasks increases

CFS scheduler maintains per-task virtual run time in variable vruntime

• Try it out: cat /proc/<PID>/sched and look for “vruntime”
• Associated with decay factor based on priority of task: lower priority has higher decay rate
• Normal default priority yields virtual run time = actual run time

To decide next task to run, scheduler picks task with lowest virtual run time

2 implemented in kernel/sched/fair.c
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Scheduling Evaluation
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Deterministic Modeling

How to select CPU-scheduling policy/algorithm for an OS?
• Question relevant for both OS implementers and users, because in some cases you can

adapt/change scheduling policies
Determine criteria, then evaluate algorithms

One approach is deterministic modeling
• Type of analytic evaluation
• Takes a predetermined workload and analytically evaluate the performance of each algorithm on it
• Example: consider the following 5 processes arriving at time 0:

Process Burst duration

𝑃1 10
𝑃2 29
𝑃3 3
𝑃4 7
𝑃5 12

For each algorithm, calculate the average waiting time
• e.g., FCFS is 28, SJF 13, RR (q=10) 23

Pro: simple and fast
Con: requires exact numbers for input, and is relevant only to
those (or very similar) inputs
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Queueing Models

Describes the arrival of processes, and CPU and I/O bursts probabilistically (using queueing
theory)

• Commonly exponential, and described by mean
• Computes average throughput, utilization, waiting time, etc.

Computer system described as network of servers, each with queue of waiting processes
• Requires knowing arrival rates and service rates
• Computes utilization, average queue length, average wait time, etc.
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Simulations

Queueing models are limited
Simulations can be more accurate

• Programmed model of computer
system

• Clock is a variable
• Gather statistics indicating

algorithm performance
• Simulation inputs gathered via:

1. Random number generator
according to probabilities

2. Distributions defined
mathematically or empirically

3. Traces of real events
recorded from real systems
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Implementation

Even simulations have limited accuracy
Just implement (code it up) new scheduler policy and test in real systems

• High cost, high risk
• Environments vary

Most flexible schedulers can be modified per-site or per-system
• Or APIs to modify priorities

But again environments vary
• Extrapolating from one system/workload to another is risky
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Reading List

You should study on books, not slides! Reading material for this lecture is:

Silberschatz, Galvin, Gagne. Operating System Concepts, Tenth Edition:
• Chapter 4: Threads & Concurrency
• Chapter 5: CPU Scheduling

Credits:

Some of the material in these slides is reused (with modifications) from the official slides of the
book Operating System Concepts, Tenth Edition, as permitted by their copyright note.
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