
Operating Systems — File System
ECE_3TC31_TP/INF107

Stefano Zacchiroli
2024

File-System Interface

2/1 2024 ECE_3TC31_TP/INF107 Operating Systems — File System

File

Computers have varied forms of persistent, secondary storage: NVM, HDD, tapes, etc.
OSes provide a unified view over secondary storage, generally based on the notion of file

File
A file is a named collection of related information that is recorded on secondary storage
From a user’s perspective, a file is the smallest allotment of logical secondary storage

• That is, data cannot be written to secondary storage unless they are within a file

Files can contain different kinds of information
• OS point of view, at least two types: data, executable programs
• User point of view: text, numeric, multimedia, etc.

A filesystem (or file system, or FS) is the part of an OS responsible for:
• Providing an abstract view of files to users and programs
• Translate file operations to I/O operations on mass storage devices

3/1 2024 ECE_3TC31_TP/INF107 Operating Systems — File System

File Attributes

In addition to their content, files are associated to several files attributes, such as:
• Name – only information kept in human-readable form
• Identifier – unique tag (number) identifies file within file system
• Type – needed for systems that support different file types
• Location (physical) – pointer to file location on device
• Size – current file size
• Protection – controls who can do reading, writing, executing
• Time, date, and user identification – data for protection, security, and usage monitoring

Stored in the File Control Block (FCB) of each file
Many variations across OSes, including extended file attributes such as file checksum

$ stat Makefile # Example using the UNIX stat command on the Makefile used to build these slides

File: Makefile

Size: 758 Blocks: 8 IO Block: 4096 regular file

Device: 254,1 Inode: 1582010 Links: 1

Access: (0644/-rw-r--r--) Uid: (1000/ zack) Gid: (1000/ zack)

Access: 2023-09-10 16:25:33.265416874 +0200

Modify: 2023-09-07 09:48:55.986798677 +0200

Change: 2023-09-07 09:48:55.986798677 +0200

Birth: 2023-09-07 09:48:55.986798677 +0200

4/1 2024 ECE_3TC31_TP/INF107 Operating Systems — File System

File Attributes

In addition to their content, files are associated to several files attributes, such as:
• Name – only information kept in human-readable form
• Identifier – unique tag (number) identifies file within file system
• Type – needed for systems that support different file types
• Location (physical) – pointer to file location on device
• Size – current file size
• Protection – controls who can do reading, writing, executing
• Time, date, and user identification – data for protection, security, and usage monitoring

Stored in the File Control Block (FCB) of each file
Many variations across OSes, including extended file attributes such as file checksum

$ stat Makefile # Example using the UNIX stat command on the Makefile used to build these slides

File: Makefile

Size: 758 Blocks: 8 IO Block: 4096 regular file

Device: 254,1 Inode: 1582010 Links: 1

Access: (0644/-rw-r--r--) Uid: (1000/ zack) Gid: (1000/ zack)

Access: 2023-09-10 16:25:33.265416874 +0200

Modify: 2023-09-07 09:48:55.986798677 +0200

Change: 2023-09-07 09:48:55.986798677 +0200

Birth: 2023-09-07 09:48:55.986798677 +0200

4/1 2024 ECE_3TC31_TP/INF107 Operating Systems — File System

File Operation

We can see a file as an abstract data type (ADT), fully determined by the operations it supports
Common file operations that OS provides—usually as a set of corresponding system calls—are:

1. Create
2. Write — at write pointer location
3. Read — at read pointer location (can be the same as write pointer location)
4. Reposition within file — or seek
5. Delete
6. Truncate

Depending on the OS, higher-level operations can also be provided, e.g.:
• Lock/unlock file — concurrency control among unrelated processes
• Memory map — manipulate a file as an in-memory buffer
• …

5/1 2024 ECE_3TC31_TP/INF107 Operating Systems — File System

Open Files

The OS keeps track of open files in the system using several pieces of data
Two levels of open file tables

• Per-process open file table: one entry for each file opened by a process
– Contain process-specific file information, e.g., current file pointer for read/write operations
– Each entry also points to the relevant entry in the system-wide table of open files

• System-wide open file table: one entry for each open file in the entire system
– Contain process-independent file information, e.g., file physical location on mass storage, access rights
– Keeps a counter (open count) of processes having opened a file, for garbage collection of the entry when

it reaches 0

6/1 2024 ECE_3TC31_TP/INF107 Operating Systems — File System

File Types

The content of files can be expected/required to be in a given file format
• See: https://en.wikipedia.org/wiki/List_of_file_formats

The OS can be either agnostic (does not care) or opinionated about file formats (supporting them
explicitly in system calls)

• At the very minimum the OS should support an executable file format for program execution
• Other than that modern OSes tend to be file-format agnostic

– Windows support: textual vs binary files
– UNIX does not care: all files are just byte sequences

Filename extensions, where used, are just hints to programs about what a file might contain
• See: https://en.wikipedia.org/wiki/List_of_filename_extensions

7/1 2024 ECE_3TC31_TP/INF107 Operating Systems — File System

https://en.wikipedia.org/wiki/List_of_file_formats
https://en.wikipedia.org/wiki/List_of_filename_extensions

Access Methods

The OS can provide file access in various styles
Sequential access: a file is just a sequence of logical records, which are read and/or written one
after another, moving the read/write pointer as we go

• Degenerate (but very common!) case: a logical record is a single byte → file = sequence of bytes

Direct access: a file is an array of records; each record is identified by an integer 𝑛
• Syscalls for read/write systematically take 𝑛 as parameter: read n, write n, etc.

Index access: generalization of direct access, with a reach index (e.g., a string key)
• Requires an index present somewhere, e.g., in each file, cached into memory upon opening

Sequential access is the simplest and most common file access method. It is the main one used
on UNIX.

8/1 2024 ECE_3TC31_TP/INF107 Operating Systems — File System

Sequential Access on UNIX

Based on the sequential access method, with one syscall per operation

Opening a file and obtaining an integer file descriptor as handle for future operations:
int open(const char *pathname, int flags, ... /* mode_t mode */);

// Returns file descriptor on success, or –1 on error

Reading content from file to process memory, chunk-by-chunk
ssize_t read(int fd, void *buffer, size_t count);

// Returns number of bytes read, 0 on EOF, or –1 on error

• read is very different from fread. read is a system call, which invokes a OS service; fread is a
library function (from the C standard library) which executes user code and eventually calls read
itself.

• fread entails a double copy, i.e., memory is copied twice: (1) from kernel buffer to stdlib buffer, (2)
from stdlib buffer to user process buffer.

9/1 2024 ECE_3TC31_TP/INF107 Operating Systems — File System

Sequential Access on UNIX (cont.)

Writing content from process memory to file, chunk-by-chunk
ssize_t write(int fd, void *buffer, size_t count);

// Returns number of bytes written, or –1 on error

read and write read/write starting from the position of a shared file pointer.1 Then, they
advance the pointer by the number of bytes read/written.

It is also possible to explicitly move the file pointer:
off_t lseek(int fd, off_t offset, int whence);

// Returns new file offset if successful, or –1 on error

//

// whence is one of:

// - SEEK_SET offset is set offset bytes from the beginning of the file

// - SEEK_CUR offset adjusted by bytes relative to the current file offset

// - SEEK_END offset set to the size of the file plus offset

1not to be confused with a C language pointer; a file pointer is just the current position in an open file
10/1 2024 ECE_3TC31_TP/INF107 Operating Systems — File System

Sequential Access on UNIX — Example

1 /* Based on copy.c from "The Linux Programming Interface" book, adapted for teaching purposes.

2 Copyright (C) Michael Kerrisk, 2010. License: GNU AGPL, version 3 or above.

3
4 Copy the file named argv[1] to a new file named in argv[2].

5 */

6
7 #include <fcntl.h>

8 #include <stdio.h>

9 #include <stdlib.h>

10 #include <sys/stat.h>

11 #include <unistd.h>

12
13 #define BUF_SIZE 1024

14 #define errExit(msg) { fprintf(stderr, "%s", (msg)); exit(EXIT_FAILURE); }

15
16 int main(int argc, char *argv[]) {

17 int inputFd, outputFd;

18 ssize_t numRead;

19 char buf[BUF_SIZE];

20
21 if (argc != 3) errExit("Usage: copy OLD_FILE NEW_FILE");

11/1 2024 ECE_3TC31_TP/INF107 Operating Systems — File System

Sequential Access on UNIX — Example (cont.)
1 inputFd = open(argv[1], O_RDONLY); /* open source file */

2 if (inputFd == -1) errExit("error opening source file");

3
4 outputFd = open(argv[2], O_CREAT | O_WRONLY | O_TRUNC, 0666); /* open destination file */

5 if (outputFd == -1) errExit("error opening destination file");

6
7 /* Transfer data until we encounter end of input or an error */

8 while ((numRead = read(inputFd, buf, BUF_SIZE)) > 0)

9 if (write(outputFd, buf, numRead) != numRead)

10 errExit("error: cannot write whole buffer");

11 if (numRead == -1) errExit("read error");

12
13 if (close(inputFd) == -1) errExit("error while closing source file");

14 if (close(outputFd) == -1) errExit("error while closing output file");

15 exit(EXIT_SUCCESS);

16 }

$ gcc -Wall -g -o copy copy.c

$ echo foo > foo.txt

$./copy foo.txt bar.txt # try also "strace ./copy foo.txt bar.txt" to see syscall trace

$ cat bar.txt

foo

12/1 2024 ECE_3TC31_TP/INF107 Operating Systems — File System

Directory Structure

Files are organized in directories
A directory can be viewed as a symbol table
translating file names to FCBs
As an abstract data type, directories support
the following operations:a

1. Search for a file
2. Create a file
3. Delete a file
4. List directory content
5. Rename a file
6. Traverse the FS (entire or parts of)

aNote how (2), (3), and (5) are operations on directories,
rather than files.

Information about all files (bottom of the
figure) in the FS are kept in a global directory
structure (top)

F 1 F 2
F 3

F 4

F n

Both the directory structure and the files
reside on disk

• How the directory structure and files are
represented in mass storage (= which
sequence of bytes) depends on the FS
implementation

13/1 2024 ECE_3TC31_TP/INF107 Operating Systems — File System

Directory Organization

Several different logical organizations for the directory structure are possible
• Single-level directory: all FS files in a single directory(!) — simple, but too prone to filename clashes
• Two-level directories — e.g., one home directory per user, no further nesting

Most used directory organizations are hierarchical, either trees or DAGs
• Paths are hierarchical file names used to navigate the hierarchical structure

Tree-structured directories Direct Acyclic Graph (DAG) directories

Full graph directories are possible, but avoided due to garbage collection complexity
14/1 2024 ECE_3TC31_TP/INF107 Operating Systems — File System

DAG Organization — UNIX example

The UNIX FS model is a DAG, implemented using different file types

• Regular: “normal” files containing data or programs
• Directory: symbol tables, associating to each filename another FS entity (e.g., file or directory)

Symbolic link (symlinks): files containing paths, followed transparently and by default by the FS
$ echo foo > foo.txt

$ ln -s foo.txt bar.txt # create a symbolic link bar.txt pointing to foo.txt

$ ls -l bar.txt

lrwxrwxrwx 1 zack zack 7 Sep 12 11:52 bar.txt -> foo.txt

$ cat bar.txt # the OS follows the symbolic link automatically

foo

• Symbolic links allow to create cycles (e.g., /home/zack/my_dir -> /), but the fact they have a
dedicated file type allows to skip them when performing FS traversals or removing files

15/1 2024 ECE_3TC31_TP/INF107 Operating Systems — File System

DAG Organization — UNIX example (cont.)

Hard links (not a file type!) allow two separate directory entries to point to the same file (they are
forbidden for directories)
$ echo foo > foo.txt

$ ln foo.txt bar.txt # add bar.txt as a new name for foo.txt in current dir

$ ln foo.txt baz.txt # and another one! (baz.txt)

$ ls -l

-rw-r--r-- 3 zack zack 4 set 12 11:52 bar.txt

-rw-r--r-- 3 zack zack 4 set 12 11:52 baz.txt

-rw-r--r-- 3 zack zack 4 set 12 11:52 foo.txt

• All three directory entries point to the same FCB on the FS; none of them is the “original” file vs links
to it, as it happens with symlinks

Q: when can we free the disk space used by a file in a DAG FS?
A: when the number of (hard) links to it reaches 0

• In the example above, 3 denotes the number of inbound hard links to the file
• This is why the UNIX syscall to “remove” files is called unlink()

• (It is also why garbage collection is complicated in general graph FS.)

16/1 2024 ECE_3TC31_TP/INF107 Operating Systems — File System

DAG Organization — UNIX example (cont.)

Hard links (not a file type!) allow two separate directory entries to point to the same file (they are
forbidden for directories)
$ echo foo > foo.txt

$ ln foo.txt bar.txt # add bar.txt as a new name for foo.txt in current dir

$ ln foo.txt baz.txt # and another one! (baz.txt)

$ ls -l

-rw-r--r-- 3 zack zack 4 set 12 11:52 bar.txt

-rw-r--r-- 3 zack zack 4 set 12 11:52 baz.txt

-rw-r--r-- 3 zack zack 4 set 12 11:52 foo.txt

• All three directory entries point to the same FCB on the FS; none of them is the “original” file vs links
to it, as it happens with symlinks

Q: when can we free the disk space used by a file in a DAG FS?
A: when the number of (hard) links to it reaches 0

• In the example above, 3 denotes the number of inbound hard links to the file
• This is why the UNIX syscall to “remove” files is called unlink()

• (It is also why garbage collection is complicated in general graph FS.)

16/1 2024 ECE_3TC31_TP/INF107 Operating Systems — File System

File Protection

In a multi-user system, the OS needs to ensure that only valid accesses to files are permitted
• Users should be able to decide if/how/which other users can access their files

For each different type of file and directory access—read, write, execute, create, delete, etc.—the
OS will verify if it is permitted and, if not, terminate the syscall with an error (e.g., EPERM)
Most general mechanism: Access Control List (ACL)

• Each action is performed by a user via a syscall invocation
• Each FS object associated to owner user + list of ⟨user, action⟩ pairs of permitted actions & to whom
• Each action verified against the ACL; fail if there is no match

Problem: ACL length → FCB can no longer be fixed-size, making FS implementation complicated
• Common approach: group together actions and/or users in the ACL
• E.g., group together all actions performed by:

1. file owner,
2. users member of the same user group,
3. anyone else (“others”)

17/1 2024 ECE_3TC31_TP/INF107 Operating Systems — File System

File Protection — UNIX Example

3 permission sets: file owner (“user”), members of the same group, anyone else (“others”)
3 permission bits for each set

• Read — ability to read the content of the object (data for files, list content for directories)
• Write — ability to change the content (note: directories need this to create/remove files)
• Execute

– For files: ability to execute the file as a program
– For directories: ability to resolve paths that contain the directory anywhere

Syscalls and commands for UNIX permission manipulation: chmod, chown, chgrp
• UNIX also support optional, variable-size extended ACLs; manipulated with: getfacl, setfacl

$ touch backup_password.txt # create empty file (set owner user implicity)

$ chgrp adm backup_password.txt # set its group to "adm" (user must be a member)

$ chmod u=rw,g=r,o= backup_password.txt # r/w for owner, read-only for admins, nothing for others

$ echo s3cr3t >> backup_password.txt # write password to file (quiz: why not before?)

$ ls -l backup_password.txt

-rw-r----- 1 zack adm 7 set 12 13:45 backup_password.txt

$ ls -l /home/ | grep zack

drwx--x--x 61 zack zack 12288 set 12 12:50 zack

owner can manipulate dir freely; others can just traverse paths through it (but not ls!)

18/1 2024 ECE_3TC31_TP/INF107 Operating Systems — File System

File-System Implementation

19/1 2024 ECE_3TC31_TP/INF107 Operating Systems — File System

File-System Structure

Concerns in implementing a filesystem:
1. defining how the FS should look to the user
2. map the logical FS on the physical secondary storage

Common software architecture for FS: layered file system
• I/O control: device drivers and interrupt handlers for data transfer

to/from storage devices
– E.g., retrieve disk block 123

• Basic file system: issue commands to the appropriate device
driver to read/write logical blocks

– Handle scheduling of disk operations, caching and I/O buffers
– Linux example: the block I/O subsystem

• File-organization module: knows about files, block logical and
physical addresses

– Translates logical block n. ↔ physical block n.
– Handle free space and disk allocation

• Logical file system: knows about file metadata (= FCB information)
– Translate file names/paths into file numbers
– Expose FS operations to programs via syscalls and enforce ACLs

20/1 2024 ECE_3TC31_TP/INF107 Operating Systems — File System

Filesystems

May different filesystems exist and can be supported by the same OS
Examples:

• CD-ROM: ISO 9660
• UNIX: UFS, FFS, …
• Windows: FAT, FAT32, NTFS, …
• Linux supports 130+, with extended file system ext3 and ext4 as current defaults

Distributed file systems
FUSE: general mechanism on Linux to implement filesystems in user space
Active ares of R&D with new FS still arriving and gaining popularity

• E.g., XFS, ZFS, btrfs

21/1 2024 ECE_3TC31_TP/INF107 Operating Systems — File System

https://en.wikipedia.org/wiki/Filesystem_in_Userspace

Filesystem Structures

On disk
Physical disks organized in partitions,
containing logical volumes, where filesystems
reside
Each volume contains

• (Optional) Boot control block with info
needed to boot OS

• Volume control block (called superblock on
UNIX): total n. of blocks, n. of free blocks,
pointers to free blocks, block size

• Directory structure
File Control Block (already discussed) for
each file

In memory

Mount table listing all FS currently active
(“mounted”) in the system
System-wide open-file table
Per-process open-file table
Lots of caches!

• E.g., copy of the FCB of each open file, copy
of the directory content of recently used
directories, I/O buffers, etc.

22/1 2024 ECE_3TC31_TP/INF107 Operating Systems — File System

Filesystem Structures in Action — Example

File open (a)
1. pass file name to logical file system
2. use directory structure (possibly cached) to

obtain file id
3. retrieve FCB from disk and cache it
4. update both open-file tables as needed
5. return file handle as syscall return value

File read (b)
1. retrieve FCB from file handle via open file

table(s)
2. based on current file read offset, locate

relevant data block
3. schedule disk read
4. update memory, return from syscall

(Simplified for brevity.)

23/1 2024 ECE_3TC31_TP/INF107 Operating Systems — File System

Directory Implementation

Linear list of file names with pointer to the data blocks
• Simple to program
• Time-consuming to execute

– Linear search time
– Could keep ordered alphabetically via linked list or use B+ tree

Hash table – linear list with hash data structure pointing into it
• Decreases directory search time
• Collisions – situations where two file names hash to the same location
• Only good if entries are fixed size, or use chained-overflow method

24/1 2024 ECE_3TC31_TP/INF107 Operating Systems — File System

Allocation Method

Filesystem Allocation Problem

How to allocate storage space to files so that:
1. Storage space is utilized effectively, and
2. Files can be accessed quickly.

Context: secondary storage disks are accessible (for read/write) at the granularity of fixed-size
blocks (e.g., 512 bytes to 10 KiB), not individual bytes
An allocation method refers to how disk blocks are allocated to files
Three major allocation methods:

• Contiguous allocation
• Linked allocation
• Indexed allocation

25/1 2024 ECE_3TC31_TP/INF107 Operating Systems — File System

Contiguous Allocation

Each file occupies a set of contiguous blocks
Simple – only starting location (block n.) and
length (number of blocks) are required to
identify a file on disk
Support both sequential and direct access
Best performances in most cases
Problems

• Finding space on the disk for a file
– There is enough total space in the disk to

store a file, but scattered all around, so we
cannot use it

– Known as external fragmentation problem
• Knowing file size in advance, at creation time
• Need for defragmentation either off-line

(downtime) or on-line (performances
impacted for the process duration)

26/1 2024 ECE_3TC31_TP/INF107 Operating Systems — File System

Linked Allocation

Each file is a linked list of disk blocks: blocks
may be scattered anywhere on the disk

• FCB points to first (and possibly last) block
• Each block points to the next

Solves completely external fragmentation
problem

• Blocks can be scattered anywhere on disk
Problems

• Does not support direct access
• Pointers take some space
• Reliability: what if you lose a block in the

middle of the chain?

27/1 2024 ECE_3TC31_TP/INF107 Operating Systems — File System

File-Allocation Table (FAT)

The File-Allocation Table (FAT) was a very popular
filesystem for MS-DOS and early Windows releases

• Still used on simple devices like USB sticks
Linked allocation method that separates the block list
from data blocks
Beginning of the volume contain a linked list of block
IDs (but not the data!)
To read a file:

1. Read FAT; find desired file entry
2. Follow list to desired block; obtain block ID
3. Read block from disk

Pro: better direct access: “only” FAT needs to be read
Pro: can keep multiple FAT copies to improve reliability
Con: if FAT not cached, many seeks back/forth with disk
head

28/1 2024 ECE_3TC31_TP/INF107 Operating Systems — File System

Indexed Allocation

Indexed allocation brings all data pointers for
a file into one location

• Each file has its own index block(s) of
pointers to its data blocks

Supports direct access: (1) locate the desired
pointer in the index block, (2) follow it
No external fragmentation
Problem: maximum file size limited by the size
of index block (how many pointers can it fit?)

• Trade-off on index block size:
– large → more space used by pointers
– small → limited maximum file size

29/1 2024 ECE_3TC31_TP/INF107 Operating Systems — File System

Combined Indexed Allocation — UNIX Example

FCB on UNIX FS called i-node (or inode, for
“index node”)

• Stores file metadata + data block pointers
Data pointers separated in tiers

• First tier (e.g., 15) point to direct blocks
containing file data (ptrs → data)

• Second tier point to single indirect blocks:
disk blocks containing themselves pointers
to blocks with file data (ptrs → ptrs → data)

• Third tier: double indirect blocks (ptrs →
ptrs → ptrs → data)

• And so on up to triple indirect blocks
Analysis

• Keeps inode size small (e.g., 2 KiB)
• Fast direct access to initial part of a file
• Good direct access (via few indirections) to

entire file

30/1 2024 ECE_3TC31_TP/INF107 Operating Systems — File System

A Closer Look to I-nodes
On UNIX, user programs can retrieve the information contained in the i-node of a file using the stat

family of syscalls (the already shown stat CLI command provides the same functionality):
int stat(const char *pathname, struct stat *statbuf);

int lstat(const char *pathname, struct stat *statbuf); // same but doesn't follow pathname if symlink

int fstat(int fd, struct stat *statbuf); // same for an already open file

// All return 0 on success, or –1 on error

struct stat {

dev_t st_dev; /* IDs of device on which file resides */

ino_t st_ino; /* I-node number of file */

mode_t st_mode; /* File type and permissions */

nlink_t st_nlink; /* Number of (hard) links to file */

uid_t st_uid; /* User ID of file owner */

gid_t st_gid; /* Group ID of file owner */

dev_t st_rdev; /* IDs for device special files */

off_t st_size; /* Total file size (bytes) */

blksize_t st_blksize; /* Optimal block size for I/O (bytes) */

blkcnt_t st_blocks; /* Number of (512B) blocks allocated */

time_t st_atime; /* Time of last file access */

time_t st_mtime; /* Time of last file modification */

time_t st_ctime; /* Time of last status change */

};

31/1 2024 ECE_3TC31_TP/INF107 Operating Systems — File System

A Closer Look to I-nodes (cont.)

UNIX mantra: “everything is a file”
In particular, FS objects used to create the filesystem DAG structure are files themselves

• Directory
– FS object of type directory (S_ISDIR(stat.mode_t) is true), containing a list of associations ⟨filename,

i-node⟩
– The list of pairs is stored in the data blocks of the FS object; as a list or hash table, depending on the FS

implementation
• Symbolic link

– FS object of type symlink (S_ISLNK(stat.mode_t) is true), containing a string that is interpreted as a
path and followed transparently upon file access

– The string (= link destination) is stored in the data blocks of the FS object

32/1 2024 ECE_3TC31_TP/INF107 Operating Systems — File System

Efficiency and Performance

FS efficiency is critical for system performances
• Rationale: files are the main tool for data storage + disks are the slowest storage

FS efficiency depends on:
• Disk allocation method and directory algorithms
• Types of data kept in file’s directory entry

– E.g., to list the size of all directory entries do I need a separate stat() call per entry?
• Pre-allocation or as-needed allocation of metadata structures

– E.g., UNIX i-nodes are pre-allocated on disk so that they cost nothing to create
• Fixed-size or varying-size data structures

33/1 2024 ECE_3TC31_TP/INF107 Operating Systems — File System

Efficiency and Performance (cont.)

Modern FS use many different techniques to improve performances
Keeping data and metadata close together

• E.g., UNIX i-nodes are spread around the disk so that they can be near to their data blocks
Buffer cache – OS keeps a (possibly very large!) part of main memory as cache for frequently
used data blocks and i-nodes

• E.g., see the buffer/cache column in the output of the free command (on Linux)
Synchronous writes sometimes requested by apps or needed by OS

• Bypass buffering/caching – writes must hit disk before write() syscall return
Asynchronous writes are more common, buffer-able, faster

• write() returns as soon as data is written to buffer cache; the OS will flush it to disk later, when
convenient/efficient

Optimizations for sequential access:
• Free-behind: remove an entry from the buffer cache as soon as next one is requested

– Rationale: it will not be requested soon anyway
• Read-ahead: read at once from disk several blocks after the requested one

– Rationale: they will be requested soon + larger disk reads can be more efficient and benefit from DMA

34/1 2024 ECE_3TC31_TP/INF107 Operating Systems — File System

Recovery

FS implementation often keeps the same information in various places
• E.g., on-disk, in-memory, in caches

FS operations often need to update different structures consistently
• E.g., allocate an i-node, fill corresponding data blocks with pointers + data

What if a crash or data corruption breaks FS data consistency?
Standard approach to the problem: (1) detect, (2) correct (when possible)
Consistency checking – compares data in directory structure with data blocks on disk, tries to fix

• E.g., fsck on UNIX
• Can be slow and is not foolproof
• Often run at system boot: at given intervals and/or if FS was not unmounted cleanly

Periodically use system programs to backup FS data to another storage device (magnetic tape,
other magnetic disk, optical)

• Recover lost file or disk by restoring data from backup

35/1 2024 ECE_3TC31_TP/INF107 Operating Systems — File System

Recovery

FS implementation often keeps the same information in various places
• E.g., on-disk, in-memory, in caches

FS operations often need to update different structures consistently
• E.g., allocate an i-node, fill corresponding data blocks with pointers + data

What if a crash or data corruption breaks FS data consistency?
Standard approach to the problem: (1) detect, (2) correct (when possible)
Consistency checking – compares data in directory structure with data blocks on disk, tries to fix

• E.g., fsck on UNIX
• Can be slow and is not foolproof
• Often run at system boot: at given intervals and/or if FS was not unmounted cleanly

Periodically use system programs to backup FS data to another storage device (magnetic tape,
other magnetic disk, optical)

• Recover lost file or disk by restoring data from backup

35/1 2024 ECE_3TC31_TP/INF107 Operating Systems — File System

Journaling

Journaling is a feature of modern FS, inspired by database log-based recovery algorithms
• Observation: with consistency-checking we allow to break and detect+repair it later
• Journaling goal: prevent failures to become FS inconsistencies; FS always consistent by design

Record each metadata update to the file system as a transaction
All transactions are written to a log (!= to FS structures on disk)

• A transaction is considered committed once written to the log
• Log could be on a separate device or section of disk
• However, the file system may not yet be updated

Transactions are asynchronously written from the log to the FS structures (flush)
• After FS structures updated, transaction is removed from the log

In case of crash, all remaining transactions in the log must be replayed at mount
Faster recovery from crash, removes chance of inconsistency of metadata

• Bonus point: transactions can be batched together for flush, improving write performances

36/1 2024 ECE_3TC31_TP/INF107 Operating Systems — File System

Reading List

You should study on books, not slides! Reading material for this lecture is:

Silberschatz, Galvin, Gagne. Operating System Concepts, Tenth Edition:
• Chapter 13: File-System Interface
• Chapter 14: File-System Implementation

Credits:

Some of the material in these slides is reused (with modifications) from the official slides of the
book Operating System Concepts, Tenth Edition, as permitted by their copyright note.

37/1 2024 ECE_3TC31_TP/INF107 Operating Systems — File System

https://www.os-book.com/OS10/
https://www.os-book.com/OS10/slide-dir/
https://www.os-book.com/OS10/

Appendix

38/1 2024 ECE_3TC31_TP/INF107 Operating Systems — File System

File Locking

High-level operations provided by some OS and FS
Enables concurrency control among unrelated processes via the FS as a shared resource
Similar to reader-writer locks

• Shared lock similar to reader lock – several processes can acquire it concurrently
• Exclusive lock similar to writer lock

Mediates access to a file
File-locking mechanisms:

• Mandatory – access is denied depending on locks held and requested (common on Windows)
• Advisory – processes can find status of locks and decide what to do (common on UNIX)

39/1 2024 ECE_3TC31_TP/INF107 Operating Systems — File System

File Locking on UNIX — Example

Many different APIs exist for file locking on UNIX
• Flock is a popular (but non-standardized) one that support entire-file advisory locking
• fcntl is a POSIX alternative, supporting advisory record locking (byte range granularity)

Flock can be used via the flock() syscall or the homonymous CLI command:
flock [options] file|dir -c command [arguments]

• command is executed wrapping it into a lock acquisition on file or dir
• By default (or with -x) acquires an exclusive lock
• -s requests a shared lock instead
• -w sec fail if lock cannot be acquired within sec seconds

Examples (from flock(1)):

• shell1> flock /tmp -c cat

shell2> flock -w .007 /tmp -c echo; /bin/echo $?

Set exclusive lock to directory /tmp and the second command will fail.

• shell> flock -x local-lock-file echo 'a b c'

Grab the exclusive lock "local-lock-file" before running echo with 'a b c'.

40/1 2024 ECE_3TC31_TP/INF107 Operating Systems — File System

Free-Space Management

How do you find a free block to allocate to a given file when needed?

FS maintains a free-space list to track available blocks
Common implementation: a bit vector (or bitmap) with 1 bit per logical block

• bit = 1 if a block is free; 0 otherwise
• Example: consider a disk where blocks 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 17, 18, 25, 26, and 27 are free

and the rest of the blocks are allocated. The free-space bitmap would be:
001111001111110001100000011100000…

Very efficient: find 𝑛 contiguous free blocks → find a string of 𝑛 bits = 1
• Modern CPUs have dedicated instructions for complex bit operations

Bitmap requires extra space, ideally in memory for caching. Example:
• block size = 4 KiB = 212 bytes

disk size = 240 bytes (1 TiB)
𝑛 = 240/212 = 228 bits (or 32 MiB)

• Growing more and more as disk sizes increase…

41/1 2024 ECE_3TC31_TP/INF107 Operating Systems — File System

	File-System Interface
	File-System Implementation
	Appendix

