
Operating Systems — Memory
Management
ECE_3TC31_TP/INF107

Stefano Zacchiroli
2024



Background

2/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



Background

Program must be brought (from disk) into memory for execution
The only types of storage CPU can access directly are: (1) registers, (2) main memory
Memory hardware is “dumb”, it only sees a stream of:

• address + read request, or
• address + data and write requests

Performances:
• Register access is done in one CPU clock cycle (or less)
• Main memory can take many cycles, causing a stall (i.e., process blocked waiting for memory)
• Cache sits between main memory and CPU registers to avoid/mitigate stalls

Protection of memory is required to ensure correct OS operation

3/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



Address Binding

Addresses are represented differently throughout program’s life
cycle

• Source code addresses usually symbolic
• Compiled code addresses bind to relocatable addresses

– E.g., “14 bytes from beginning of this module”
• Linker or loader bind relocatable addresses to absolute addresses

– E.g., 0x74014
• Each binding maps one address space to another

Address binding of instructions and data to memory addresses can
happen at different stages

• Compile time: If memory location known a priori, absolute code
can be generated; must recompile code if starting location changes

• Load time: Must generate relocatable code if memory location is
not known at compile time

• Execution time: Binding delayed until run time if the process can
be moved during its execution from one segment to another

– Need hardware support for address maps (e.g., relocation register)

4/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



Logical vs. Physical Address Space

The concept of a logical address space that is bound to a separate physical address space is
central to proper memory management

• Logical address – generated by the CPU (also referred to as virtual address)
• Physical address – address seen by the memory unit

Logical address space is the set of all logical addresses generated by a program
Physical address space is the set of all physical addresses generated by a program
Memory-Management Unit (MMU): hardware device that at run time maps logical to physical
address

5/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



Memory-Management Unit (MMU)

At hardware level, CPU must check every memory access generated in user mode for validity
• Two registers used for this: relocation & limit

Each logical address is verified to be between 0 and a maximum (logical) address stored in the
limit register (not shown in the picture)
The value in the relocation register is added to every address generated by a user process at the
time it is sent to memory

6/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



Contiguous Memory Allocation

7/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



Memory Allocation Problem

When loading a program for execution1 we need to decide where to put it in physical memory
• More precisely: where (= which physical address) to map each of its logical addresses to

This is the memory allocation problem
The simplest memory-allocation schemes are based on the idea of contiguous memory
allocation

• We only decide the base starting physical address for a given program
• Subsequent addresses (both logical and physical) will follow increasingly from there, “contiguously”

1at least when loading; we will see later that there are other situations in which we will need to re-decide this
8/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



Variable Partition Allocation

Variable partition allocation is a contiguous memory allocation scheme where each program is loaded
into a memory partition of the same size of the program

Degree of multiprogramming limited by number of partitions
Variable-partition sizes for efficiency (sized to a given process’ needs)
Hole – block of available memory; holes of various size are scattered throughout memory
OS maintains information about: (a) allocated partitions, and (b) free partitions (hole)
When a process starts: it is allocated memory from a hole large enough to accommodate it
When a process terminates: OS frees its partition, adjacent free partitions are combined

9/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



Dynamic Storage-Allocation Problem

How to satisfy an allocation request for a partition of size 𝑛 from a list of free holes?

First-fit: Allocate the first hole that is big enough
Best-fit: Allocate the smallest hole that is big enough

• Must search entire list, unless ordered by size
• Produces the smallest leftover hole

Worst-fit: Allocate the largest hole
• Must search entire list, as before
• Produces the largest leftover hole

Experimental evaluation results

First-fit and best-fit better than worst-fit in terms of speed and memory utilization
No clear winner between first-fit and best-fit in terms of memory utilization
But first-fit faster than best-fit (hence overall winner)

10/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



Dynamic Storage-Allocation Problem

How to satisfy an allocation request for a partition of size 𝑛 from a list of free holes?

First-fit: Allocate the first hole that is big enough
Best-fit: Allocate the smallest hole that is big enough

• Must search entire list, unless ordered by size
• Produces the smallest leftover hole

Worst-fit: Allocate the largest hole
• Must search entire list, as before
• Produces the largest leftover hole

Experimental evaluation results

First-fit and best-fit better than worst-fit in terms of speed and memory utilization
No clear winner between first-fit and best-fit in terms of memory utilization
But first-fit faster than best-fit (hence overall winner)

10/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



Fragmentation

Internal Fragmentation – allocated memory may be slightly larger than requested memory; this
size difference is memory internal to a partition, but not being used

• Intrinsic problem to any allocation scheme with granularity larger than 1 address (= 1 byte)
External Fragmentation – total memory space exists to satisfy a request, but it is not contiguous

• Intrinsic problem to contiguous allocation
First-fit analysis reveals that given 𝑁 blocks allocated, 0.5 ⋅ 𝑁 blocks are lost due to external
fragmentation

• 1
3 may be unusable → 50% rule (proven by Knuth)

We can mitigate external fragmentation with compaction
• Shuffle memory contents to place all free memory together in one large block
• Compaction is possible only if relocation is dynamic, and is done at execution time

Issues:
• Could require copying memory from/to mass storage (slow) if memory is really tight
• Takes a lot of time! And involved processes are blocked in the meantime

Can we do better?

11/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



Fragmentation

Internal Fragmentation – allocated memory may be slightly larger than requested memory; this
size difference is memory internal to a partition, but not being used

• Intrinsic problem to any allocation scheme with granularity larger than 1 address (= 1 byte)
External Fragmentation – total memory space exists to satisfy a request, but it is not contiguous

• Intrinsic problem to contiguous allocation
First-fit analysis reveals that given 𝑁 blocks allocated, 0.5 ⋅ 𝑁 blocks are lost due to external
fragmentation

• 1
3 may be unusable → 50% rule (proven by Knuth)

We can mitigate external fragmentation with compaction
• Shuffle memory contents to place all free memory together in one large block
• Compaction is possible only if relocation is dynamic, and is done at execution time

Issues:
• Could require copying memory from/to mass storage (slow) if memory is really tight
• Takes a lot of time! And involved processes are blocked in the meantime

Can we do better?

11/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



Paging

12/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



Paging

Main idea: make the physical address space
non-contiguous (logical space still contiguous)

• Avoids external fragmentation
• Avoids problem of varying sized memory chunks

Divide physical memory into fixed-size blocks
called frames

• Size is power of 2, usually between 512 bytes and
16 MiB, dictated by hardware

Divide logical memory into blocks of the same size
called pages
Keep track of all free frames
To run a program of size 𝑁 pages, need to find 𝑁
free frames and load program
Set up a page table to translate logical to physical
addresses

13/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



Address Translation Scheme

Physical address generated by CPU is divided into:
• Page number (𝑝) – used as an index into a page table which contains base address of each page in

physical memory
• Page offset (𝑑, in bytes) – combined with base address to define the physical memory address that is

sent to the memory unit
Same split (number+offset) applied to logical addresses

For given logical address space 2𝑚 and page size 2𝑛

14/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



Paging Hardware

15/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



Paging (Example)

Logical address: 𝑛 = 2 and 𝑚 = 4. Using a
page size of 4 bytes and a physical memory
of 32 bytes (8 pages)
(Logical) page 0 starts at logical address 0
and is associated by the page table to
(physical) frame 5, starting at physical
address 20 (decimal).
Logical address 2—corresponding to page 0
and offset 2—contains byte c and is stored in
memory at physical address 22 (decimal).

16/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



Internal Fragmentation (Example)

Paging addresses external fragmentation, but not internal fragmentation
Example:

• Page size = 2048 bytes
• One process of size = 72766 bytes
• Requires: 35 pages (x 2048 = 71680 bytes) + 1086 bytes

– 1 full page (the 36th) allocated to cover what remains
• Internal fragmentation: 2048 - 1086 = 962 bytes (1.32% of process size)

Worst case fragmentation = 1 full frame allocated for just 1 byte in a very small process
Average fragmentation = ½ frame size

So are small frame sizes desirable?

But the page table takes memory too!
Historical trend in OSes: increase page sizes over time (to reduce page table sizes). E.g.:

• Solaris supports two page sizes – 8 KiB and 4 MiB
• Linux supports standard pages of 4 KiB and “huge pages” up to 1 GiB

17/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



Internal Fragmentation (Example)

Paging addresses external fragmentation, but not internal fragmentation
Example:

• Page size = 2048 bytes
• One process of size = 72766 bytes
• Requires: 35 pages (x 2048 = 71680 bytes) + 1086 bytes

– 1 full page (the 36th) allocated to cover what remains
• Internal fragmentation: 2048 - 1086 = 962 bytes (1.32% of process size)

Worst case fragmentation = 1 full frame allocated for just 1 byte in a very small process
Average fragmentation = ½ frame size

So are small frame sizes desirable?
But the page table takes memory too!
Historical trend in OSes: increase page sizes over time (to reduce page table sizes). E.g.:

• Solaris supports two page sizes – 8 KiB and 4 MiB
• Linux supports standard pages of 4 KiB and “huge pages” up to 1 GiB

17/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



Shared Pages

Paging adds an indirection level between logical memory (seen by the processes) and physical
memory (seen by the hardware)
This indirection can be exploited to share memory pages between processes

Use case: shared code
• One copy of read-only code shared among processes (i.e., text editors, compilers, libraries)
• Similar to multiple threads sharing the same program instructions

Use case: shared data
• Also useful for interprocess communication if sharing of read-write pages is allowed
• Similar to multiple threads sharing the same address space

18/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



Shared Pages (Example)

Shared libraries are generally
shared among all processes linked
against (the same versions of) them
The C standard library libc is
often shared by most of the
processes executing on a system

• Significant memory saving!
But the principle is applicable to any
other shared library and object

19/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



Memory Mapping

20/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



Memory-Mapped Files

Memory mapping is a direct file access method,
alternative to sequential access, which leverages the
page table to improve file I/O performances
Idea: “map” a (part of a) file to a set of memory
pages—e.g., a fixed-length void * buffer

• Read from memory buffer → data read from file to
memory via demand paging (more on this later)

• Write to memory buffer → write data to file
After setup, no syscalls needed for I/O operations

• Lower context-switch overhead
• No seek/file pointer needed! All accesses are direct,

with byte granularity
• I/O still takes time to happen, of course, but can be lazy

and is cached transparently by the OS

21/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



Sharing Memory via Memory Mapping

Memory mapping can also be leveraged as a
shared memory IPC mechanism
If multiple processes memory map the same file,
the OS will make them share mapped pages

• Reading/writing memory will result in both
updating the mapped file and sharing the updated
data with all participant processes

If only memory sharing is desired (and not file
access), some OSes allow to map regions of
anonymous memory, which are not backed by a
file and can be shared by related processes, e.g.,
across fork()

22/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



Memory Mapping — UNIX Example

UNIX provides the mmap() syscall to setup memory mappings
void *mmap(void *addr, size_t length, int prot, int flags, int fd, off_t offset);

// Returns starting address of mapping on success, or MAP_FAILED on error

//

// prot -> memory protection, e.g., whether it is r/w or r/o

// flags -> MAP_SHARED for memory that (1) will be reflected to the FS and

// (2) (potentially) shared among processes; MAP_PRIVATE otherwise

• It maps a region of an open file (which can be the entire file) to a memory buffer whose address is
returned by the syscall

• Note that via mmap access you can change the content of a file but not resize it; write/lseek/truncate
are needed for that

The matching munmap() syscall shuts down an existing memory mapping
int munmap(void *addr, size_t length);

// Returns 0 on success, or –1 on error

23/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



mmap — Example
1 #include <sys/mman.h>

2 /* ... include list trimmed for space ... */

3
4 #define errExit(msg) { fprintf(stderr, "%s\n", (msg)); exit(EXIT_FAILURE); }

5
6 int main(int argc, char *argv[]) {

7 char *addr;

8 int fd;

9 struct stat finfo;

10
11 if (argc != 2) errExit("Usage: mmap FILE");

12 fd = open(argv[1], O_RDONLY); /* open input file */

13 if (fstat(fd, &finfo) == -1) /* retrieve file info, as we need its size */

14 errExit("fstat failed");

15
16 addr = mmap(NULL, finfo.st_size, PROT_READ, MAP_PRIVATE, fd, 0);

17 if (addr == MAP_FAILED) errExit("mmap failed");

18
19 if (write(STDOUT_FILENO, addr, finfo.st_size) != finfo.st_size)

20 errExit("incomplete file read/write");

21 exit(EXIT_SUCCESS);

22 }

24/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



mmap — Example (cont.)

$ gcc -Wall -g -o mmap mmap.c

$ ./mmap /etc/passwd | head -n 5

root:x:0:0:root:/root:/bin/bash

daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin

bin:x:2:2:bin:/bin:/usr/sbin/nologin

sys:x:3:3:sys:/dev:/usr/sbin/nologin

sync:x:4:65534:sync:/bin:/bin/sync

Exercise: try it also under strace to check if read/write syscalls are happening and why.

25/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



Swapping

26/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



Swapping

When memory becomes tight, (parts of) processes can be swapped temporarily out of memory
to a backing store, and brought back into memory later for continued execution
Total logical memory space of processes can exceed physical memory

• The degree of multiprogramming increases
Backing store – fast disk large enough to accommodate copies of all address spaces of all
processes
Major part of swap time is I/O transfer time; total transfer time is directly proportional to the
amount of memory swapped

Does the swapped out process need to swap back in to same physical addresses?
• Generally not, but it is complicated™ if swapping during pending I/O requests

Modified versions of swapping are found on most non-mobile OS (i.e., UNIX, Linux, and Windows)
• Swapping normally disabled
• Started if more than threshold amount of memory allocated
• Disabled again once memory demand reduced below threshold

27/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



Swapping

When memory becomes tight, (parts of) processes can be swapped temporarily out of memory
to a backing store, and brought back into memory later for continued execution
Total logical memory space of processes can exceed physical memory

• The degree of multiprogramming increases
Backing store – fast disk large enough to accommodate copies of all address spaces of all
processes
Major part of swap time is I/O transfer time; total transfer time is directly proportional to the
amount of memory swapped
Does the swapped out process need to swap back in to same physical addresses?

• Generally not, but it is complicated™ if swapping during pending I/O requests
Modified versions of swapping are found on most non-mobile OS (i.e., UNIX, Linux, and Windows)

• Swapping normally disabled
• Started if more than threshold amount of memory allocated
• Disabled again once memory demand reduced below threshold

27/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



Swapping Pages

With memory paging, we can
implement swapping at page
granularity

• Obsolete alternative: swap in/out
entire processes

When memory is tight, swap out
individual pages
When memory becomes available
again, or swapped out pages are
needed, swap them back in

28/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



Virtual Memory

29/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



Virtual Address Space

The addresses and address space seen by programs are “virtual”,
in the following sense
Usually design logical address space for stack to start at max
logical address and grow “down” while heap grows “up” from 0

• Maximizes address space use
• (Lot of) unused address space between the two is a hole

– No physical memory needed until heap or stack grows to a given
new page

Enables sparse address spaces with holes left for growth,
dynamically linked libraries, etc.

30/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



Virtual Memory

The union of virtual addresses and paging provides the illusion that the memory available to any
process is very large, generally much larger than physical memory → virtual memory.

31/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



Demand Paging

When executing a program we can bring entire process into memory at load time
Or, with virtual memory, we can bring a page into memory only when it is needed → demand
paging

• Less I/O needed, no unnecessary I/O
• Less memory needed
• Faster startup time

To implement demand paging we need MMU support for determining:
• If pages needed are already memory resident → no difference from non demand-paging
• If page needed and not memory resident → need to detect and load the page into memory from

backing storage
– Without affecting program runtime behavior (user transparent)
– Without programmer needing to change code (developer transparent)

32/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



Demand Paging

When executing a program we can bring entire process into memory at load time
Or, with virtual memory, we can bring a page into memory only when it is needed → demand
paging

• Less I/O needed, no unnecessary I/O
• Less memory needed
• Faster startup time

To implement demand paging we need MMU support for determining:
• If pages needed are already memory resident → no difference from non demand-paging
• If page needed and not memory resident → need to detect and load the page into memory from

backing storage
– Without affecting program runtime behavior (user transparent)
– Without programmer needing to change code (developer transparent)

32/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



Valid-Invalid Bit
Associate to each entry in the
page table a valid–invalid bit

• v → page in memory
• i → page not in memory

Initially set to i for all entries
(demand paging!)
During MMU address
translation, if an invalid page
is requested → page fault

33/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



Handling a Page Fault

1. Access invalid page → page
fault

2. Trap to the OS
3. Find free frame
4. Swap page into frame (disk

I/O)
5. Set valid bit to v

6. Restart the instruction that
caused the page fault

34/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



Performances of Demand Paging

Three major activities
• Handle the interrupt – just several hundred instructions with careful coding
• Read the page – lot of time (I/O)
• Restart the process – again just a small amount of time

Page fault rate 0 ≤ 𝑝 ≤ 1
• 𝑝 = 0 → no page faults; 𝑝 = 1 every memory reference is a fault

Effective Access Time (EAT) =
(1–𝑝) × memory access + 𝑝 × (page fault overhead + swap page out + swap page in)

35/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



Performances of Demand Paging (Example)

Memory access time = 200 ns
Average page-fault service time = 8 ms
EAT = (1–𝑝) × 200 + 𝑝 × (8 𝑚𝑠)
= (1–𝑝) × 200 + 𝑝 × 8 000 000
= 200 + 𝑝 × 7 999 800
If one access out of 1000 causes a page fault, then EAT = 8.2 microseconds (µs).

• This is a slowdown by a factor of 40 !
If we want performance degradation < 10%

• 220 > 200 + 7 999 800 × 𝑝
• 20 > 7 999 800 × 𝑝
• 𝑝 < .0000025, i.e., less than one page fault in every 400 000 memory accesses

(Spoiler: yes, it is achievable, because program execution exhibits strong locality of reference.)

36/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



Page Replacement

37/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



What if There are no Free Frames?

Virtual memory is nice, but pages are
ultimately stored in physical frames
Memory frames used by: process pages,
kernel pages, I/O buffers
Q: What if there are no free frame when
a page fault happens?

• We have over-allocated memory, i.e.,
allocated more virtual memory than
available physical memory

• It is fine!, because it increases
multiprogramming, but we need to
handle it

A: Page replacement – find some page in memory, but not really in use, page it out
• A page replacement algorithm decides what to do, both with concerned processes (terminate? swap

out?) and concerned pages (which ones to page in/out)

38/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



Page Replacement Process

1. Find the location of the desired page on disk
2. Find a free frame:

• If there is a free frame, use it
• If not, page replacement algorithm selects a

victim frame
• Write victim frame to disk if dirty

– If the page was read-only or unmodified,
e.g., code, there is no need to write it back
to disk

3. Bring the desired page into the (newly) free
frame; update page table

4. Continue the process by restarting the
instruction that caused the trap

Note: requires up to 2 page transfers per page fault → increasing EAT

39/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



Evaluation of Page Replacement Algorithms

Intertwined sub-problems: frame allocation policy (with multiprogramming, how many frames
allocate to each process); page replacement policy (when memory is full at a page fault, which
page to replace)

• We will focus on evaluating page replacement algorithms
Goal: minimize the number of page faults

• Both on first and subsequent accesses to a page

Evaluate algorithm by running it on a string of memory
references (reference string) and computing the
number of page faults on that string

• String is just page numbers, not full addresses, e.g.,
7,0,1,2,0,3,0,4,2,3,0,…

• String can be random, simulated from a model, or a
trace recorded from a real system

• Evaluation results depend on number of frames
available. In general, we expect page faults to decrease
when available frames increase (i.e., adding memory
should not make your system slower)

Expected trend for good memory
replacement policies

40/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



First In, First Out (FIFO) Algorithm

Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1
3 frames per process, i.e., 3 pages can be in memory at a time per process

Total: 15 page faults

Implementation: How to track ages of pages?
• Don’t. Just use a FIFO queue instead.

41/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



Bélády’s Anomaly

Consider a FIFO page replacement algorithm
Reference string
1,2,3,4,1,2,5,1,2,3,4,5

The number of page faults for varying
amounts of available frames is shown on the
right

FIFO page replacement exhibits Bélády’s Anomaly:2 the page-fault rate may increase as the number
of available frames increases.

2Belady, Nelson, Shedler. An anomaly in space-time characteristics of certain programs running in a paging machine.
Commun. ACM 12(6): 349-353 (1969)

42/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



Optimal Page Replacement

Requirements for the best possible page replacement algorithm:
1. Has the lowest page-fault rate among all possible algorithms
2. Does not exhibit Bélády’s anomaly when increasing available frames

Such an algorithm exists and has been called OPT page replacement algorithm (also called MIN)
• OPT rule: Replace the page that will not be used for the longest period of time.
• Example (9 page faults in total):

There’s one “little” problem: we cannot predict the future, so how can we implement OPT?
• A: we can’t, but we can approximate it!
• Also, OPT is a useful reference benchmark.

43/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



Optimal Page Replacement

Requirements for the best possible page replacement algorithm:
1. Has the lowest page-fault rate among all possible algorithms
2. Does not exhibit Bélády’s anomaly when increasing available frames

Such an algorithm exists and has been called OPT page replacement algorithm (also called MIN)
• OPT rule: Replace the page that will not be used for the longest period of time.
• Example (9 page faults in total):

There’s one “little” problem: we cannot predict the future, so how can we implement OPT?
• A: we can’t, but we can approximate it!
• Also, OPT is a useful reference benchmark.

43/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



Least Recently Used (LRU) Algorithm

Idea: use past knowledge, rather than the future, to approximate OPT.
• Assumption: history repeats itself.

Replace the page that has not been used for the longest amount of time

12 faults – better than FIFO but worse than OPT
LRU is a generally good algorithm and frequently used. Does not exhibit Bélády’s anomaly.

But how to implement?
1. Page counters storing last use timestamps → search through all counters to find victim
2. Keep a stack of page numbers in a doubly-linked list

– A page is referenced → move it to the top (changing 6 pointers max)
– No search needed for replacement, but each update is more expensive

44/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



Least Recently Used (LRU) Algorithm

Idea: use past knowledge, rather than the future, to approximate OPT.
• Assumption: history repeats itself.

Replace the page that has not been used for the longest amount of time

12 faults – better than FIFO but worse than OPT
LRU is a generally good algorithm and frequently used. Does not exhibit Bélády’s anomaly.
But how to implement?

1. Page counters storing last use timestamps → search through all counters to find victim
2. Keep a stack of page numbers in a doubly-linked list

– A page is referenced → move it to the top (changing 6 pointers max)
– No search needed for replacement, but each update is more expensive

44/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



LRU Approximation Algorithms

LRU needs special support (counters or stack) and is still slow (for updates or victim selection)
Modern systems provide hardware support that can be leveraged by page replacement
Reference bit

• Associated to each page, initially set to 0 (by OS)
• When a page is referenced → set bit to 1 (done automatically by hardware)
• After some time we check all the bits

– All pages with reference bit = 0 have not been referenced (since last check)
– We select our victims among these
– We do not know the order of reference among them, though

Reference bits provide support to implement efficiently algorithms that approximate LRU (which in
turn approximates OPT)

45/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



Second-Chance Algorithm

Second-Chance Algorithm (also called clock
algorithm): a widely used LRU approximation
based on reference bits

Basic policy: FIFO replacement
When a candidate victim is selected we
inspect its reference bit

• If bit = 0 → page not referenced, victim found
• If bit = 1 → page was referenced

– “Give page a 2nd chance” and move to
next candidate victim

– Set reference bit to 0
Eventually we will find a victim with bit = 0

46/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



Enhanced Second-Chance Algorithm

Idea: Improve algorithm by using reference bit and modify bit (if available) in concert
Take ordered pair ⟨reference bit, modify/“dirty” bit⟩

• (0, 0) neither recently used not modified → best page to replace (no need to swap it out!)
• (0, 1) not recently used but modified → not quite as good, must write out before replacement
• (1, 0) recently used but clean → probably will be used again soon
• (1, 1) recently used and modified → probably will be used again soon and need to write out before

replacement
When page replacement called for, use the second chance scheme but use the four classes and
replace page in lowest non-empty class
Might need to search circular queue several times

47/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



Reading List

You should study on books, not slides! Reading material for this lecture is:

Silberschatz, Galvin, Gagne. Operating System Concepts, Tenth Edition:
• Chapter 9: Main Memory
• Chapter 10: Virtual Memory

Credits:

Some of the material in these slides is reused (with modifications) from the official slides of the
book Operating System Concepts, Tenth Edition, as permitted by their copyright note.

48/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management

https://www.os-book.com/OS10/
https://www.os-book.com/OS10/slide-dir/
https://www.os-book.com/OS10/


Appendix

49/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



More on the Page Table

50/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



Implementation of the Page Table

Remember: page table is process-specific, needs to be updated upon context switch
1st approach: one register per entry(!) in the page table

• Very fast
• Not scalable unless the page table is very small (e.g., ≤ 256 entries)

2nd approach: page table is kept in main memory
• Registers just point to it and are updated upon context switch
• Usually two: page-table base register (PTBR, start address) + Page-table length register (PTLR, size)

Problem: every memory data/instruction access now requires two memory accesses
• One for the page table and one for the data / instruction

3rd approach: use special fast hardware cache called translation look-aside buffers (TLBs)
• Fast associative memory that can store page table entries; small (64 to 1024 entries)
• It’s a cache with hits and misses; TLB miss → fallback to page table in main memory
• TLB key:

– just the page number → TLB flushed at each context switch
– page number + address-space identifier (ASID) → TLB can store page table entries for multiple processes

51/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



Implementation of the Page Table

Remember: page table is process-specific, needs to be updated upon context switch
1st approach: one register per entry(!) in the page table

• Very fast
• Not scalable unless the page table is very small (e.g., ≤ 256 entries)

2nd approach: page table is kept in main memory
• Registers just point to it and are updated upon context switch
• Usually two: page-table base register (PTBR, start address) + Page-table length register (PTLR, size)

Problem: every memory data/instruction access now requires two memory accesses
• One for the page table and one for the data / instruction

3rd approach: use special fast hardware cache called translation look-aside buffers (TLBs)
• Fast associative memory that can store page table entries; small (64 to 1024 entries)
• It’s a cache with hits and misses; TLB miss → fallback to page table in main memory
• TLB key:

– just the page number → TLB flushed at each context switch
– page number + address-space identifier (ASID) → TLB can store page table entries for multiple processes

51/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



Implementation of the Page Table

Remember: page table is process-specific, needs to be updated upon context switch
1st approach: one register per entry(!) in the page table

• Very fast
• Not scalable unless the page table is very small (e.g., ≤ 256 entries)

2nd approach: page table is kept in main memory
• Registers just point to it and are updated upon context switch
• Usually two: page-table base register (PTBR, start address) + Page-table length register (PTLR, size)

Problem: every memory data/instruction access now requires two memory accesses
• One for the page table and one for the data / instruction

3rd approach: use special fast hardware cache called translation look-aside buffers (TLBs)
• Fast associative memory that can store page table entries; small (64 to 1024 entries)
• It’s a cache with hits and misses; TLB miss → fallback to page table in main memory
• TLB key:

– just the page number → TLB flushed at each context switch
– page number + address-space identifier (ASID) → TLB can store page table entries for multiple processes

51/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



Translation Look-aside Buffer (TLB)

52/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



More on Swapping

53/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



Swapping on Mobile Systems

Not typically supported
• Flash memory based

– Small amount of space
– Limited number of write cycles
– Poor throughput between flash memory and CPU on mobile platform

Instead use other methods to free memory if low
• iOS asks apps to voluntarily relinquish allocated memory

– Read-only data thrown out and reloaded from flash if needed
– Failure to free can result in termination by the OS

• Android terminates apps if low free memory, but first writes application state to flash for fast restart

54/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



More on Virtual Memory

55/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



Copy-on-Write

Copy-on-Write (COW) allows parent and child processes to initially share memory pages
If either process modifies a shared page, only then is the page copied
COW allows more efficient process creation as only modified pages are copied (later)

• UNIX OSes uses this to implement fork() efficiently

Before Process 1 modifies page C

After Process 1 modifies page C

Note that we still need to duplicate the page table upon fork()

• Which is a waste of time is the child will exec() just after
• vfork() is a variant of fork() that: (1) does not duplicate the page table, (2) blocks parent

process until child exits or exec()-s

56/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



Copy-on-Write

Copy-on-Write (COW) allows parent and child processes to initially share memory pages
If either process modifies a shared page, only then is the page copied
COW allows more efficient process creation as only modified pages are copied (later)

• UNIX OSes uses this to implement fork() efficiently

Before Process 1 modifies page C After Process 1 modifies page C

Note that we still need to duplicate the page table upon fork()

• Which is a waste of time is the child will exec() just after
• vfork() is a variant of fork() that: (1) does not duplicate the page table, (2) blocks parent

process until child exits or exec()-s

56/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management



Copy-on-Write

Copy-on-Write (COW) allows parent and child processes to initially share memory pages
If either process modifies a shared page, only then is the page copied
COW allows more efficient process creation as only modified pages are copied (later)

• UNIX OSes uses this to implement fork() efficiently

Before Process 1 modifies page C After Process 1 modifies page C

Note that we still need to duplicate the page table upon fork()

• Which is a waste of time is the child will exec() just after
• vfork() is a variant of fork() that: (1) does not duplicate the page table, (2) blocks parent

process until child exits or exec()-s

56/1 2024 ECE_3TC31_TP/INF107 Operating Systems — Memory Management


	Background
	Contiguous Memory Allocation
	Paging
	Memory Mapping
	Swapping
	Virtual Memory
	Page Replacement
	Appendix
	More on the Page Table
	More on Swapping
	More on Virtual Memory


