INF107

Examen final
Eléments de correction

2023-2024

Part 1 (6 points / 25 minutes)

Combinatorial Logics

Question 1 (1 point)
Yo =T1 - To
Y2 = T1 - To

Ys = X1 - %o

Question 2 (1 point)

Yo

r1 — — Y1

Decoder @— z

To — — Y2

Ys

RISC-V Processor
Question 3 (2 points)
Fetch : L’adresse de l'instruction courante (sortie du bloc PC) est envoyée & la mémoire d’instructions
(Imem).

Decode : La mémoire d’instructions envoie 'instruction a exécuter au bloc Decode qui génere les différents
signaux de controle et notamment, le numéro du premier registre de source (x1), le numéro du registre
de destination (x2), 'immédiat contenu dans Uinstruction (4). Le banc de registres (Register file)
renvoie la valeur du registre de source.

Execute : IALU calcule I'adresse de la donnée a lire en mémoire en additionnant le contenu du registre
de source 1 et 'immédiat. Cette adresse est envoyée a la mémoire de données (DMem).

Write-back : La valeur lue en mémoire est stockée par le banc de registres dans le registre de destination.

Instruction suivante : La valeur de PC est incrémentée de 4.

Question 4 (1 point)

Les instructions load et store ne peuvent plus fonctionner car elles nécessitent deux acceés mémoire pendant
leur exécution : un acces pour récupérer I'instruction, et un autre pour réaliser I’accés mémoire demandé (écriture
pour un store et lecture pour un load).

Question 5 (1 point)

En conservant les contraintes indiquées dans le sujet, il est nécessaire de diviser 1’exécution d’une instruction
en au moins deux cycles d’horloges : un cycle pour récupérer I'instruction et un autre cycle pour effectuer ’acces
a la mémoire de données. La répartition des autres étapes (décodage, calcul par 'ALU, etc.) sur ces deux cycles
est arbitraire, bien qu'un équilibrage entre les deux cycles soit souhaitable pour optimiser la fréquence d’horloge.

Admettons que le premier cycle permet juste de récupérer 'instruction et que le second cycle réalise tout le
reste de I’exécution d’une instruction. Dans ce cas, il est nécessaire d’ajouter un registre stockant 'instruction
recue de la mémoire (regue lors du premier cycle et utilisé lors du second), entre Imem et Decode. Nous devons
également ajouter une petite machine & états pour connaitre I’état actuel (nous avons besoin de deux états :
fetch et execute). En fonction de 'état, Padresse présentée a la mémoire est soit PC (dans I'état fetch pour
récupérer l'instruction) ou la sortie de ’ALU (dans I'état execute pour gérer les load et store). Le PC ne doit
étre incrémenté que sur I'un des deux cycles, le banc de registre ne doit étre mis a jour qu’au cycle ezxecute, de
méme pour ’écriture en mémoire. Le registre contenant l'instruction ne doit étre mis & jour que dans le cycle

fetch.

Part 2 (6 points / 25 minutes)

typedef struct {
/% Member fields omitted for brevity */
} star_t;

Question 6 (1 point)

struct {
star_t *base;
unsigned int size;
unsigned int capacity;
} vector;
typedef struct vector vector_t;

Il est également possible d’utiliser une notation plus concise :

typedef struct {
star_t *base;
unsigned int size;
unsigned int capacity;
} vector_t;

Question 7 (1 point)

void init_vector(vector_t *vec) {
vec->base = NULL;
vec->size = 0;
vec->capacity = 0;

Notes : Le sujet indique qu’aucune mémoire n’est allouée pour les données de ce vecteur. La seule valeur
sensible pour le vecteur base est donc NULL (tout autre valeur serait indistinguable de I'adresse d’une zone
valide allouée). Le champ size vaut 0 (aucun élément n’est stocké dans le vecteur) et capacity vaut O car
aucun espace n’est alloué (il est donc possible de stocker au maximum 0 éléments).

La structure représentant le vecteur est passée a la fonction par adresse (via un pointeur). Pour initialiser
ses différents champs, il est donc nécessaire de déréférencer ce pointeur pour accéder aux champs. Cela peut se
faire explicitement, exemple : (*vec) .base (les parenthéses sont nécessaires & cause des priorités respectives
des opérateurs * (déréférencement) et . (accés & un champ)), ou, plus élégamment, via 'opérateur ->, exemple :
vec—>base.

00 ~J O U= Wi+~

e e e el e e
0O Ui W~ OO

Question 8 (1.5 points)

star_t #*get_element(vector_t *vec, unsigned int element_idx) {
if (element_idx >= vec->size)
return NULL;

return &vec->base[element_idx];

Note : Le test sur la ligne 2 permet de vérifier que I'indice de I’élément demandé ne dépasse pas le nombre
d’éléments réellement stockés dans le vecteur. Les éléments du vecteur sont stockés les uns a la suite des autres a
partir de 'adresse vec->base. L’élément d’indice element_idx est donc a ’adresse vec->base + element_idx
* sizeof(start_t) (opération arithmétique). Il y a deux moyens d’effectuer ce calcul et de renvoyer cette
adresse sous la forme d’un pointeur :

— Utiliser la notation tableau : I’élément concerné est vec->base[element_idx] et son adresse est &vec-

>base[element_idx].

— Utiliser l'arithmétique des pointeurs : vec->base + element_idx

Question 9 (2.5 points)

void ensure_capacity(vector_t *vec, unsigned int new_capacity)
if (vec->capacity < new_capacity) {
vec->base = realloc(vec->base, new_capacity * sizeof(star_t));
if (!vec->base) {
perror("realloc");
exit (EXIT_FAILURE);
}

vec->capacity = new_capacity;

Note : le vecteur doit pouvoir stocker au moins new_capacity éléments. Si c’était déja le cas (capacity
>= new_capacity), il n'y a rien a faire. Dans le cas contraire, il faut augmenter la capacité de stockage du
vecteur. Cela se fait avec la fonction realloc. Cette fonction prend I'adresse d’'une zone mémoire déja allouée
(vec—>base) et la nouvelle taille désirée pour cette zone. On doit pouvoir stocker new_capacity éléments,
donc la taille doit étre new_capacity * sizeof (star_t). La nouvelle zone conserve les données de ’ancienne.
L’adresse de la nouvelle zone est renvoyée par realloc. En cas d’échec, realloc renvoie NULL.

Part 3 (8 points / 40 minutes)

Question 10 (3 points)
Solution acceptée :

/* #include-s omitted for brevity */
int main() {
char cmd_line [64];
while (1) {
printf ("$,");
fflush(stdout);

/% Read the command line.
* We assume it s short and contains no argument (single word)
*/

if (read(0, cmd_line, 64) <= 1)
continue;

int rv;

rv = fork();

switch (rv) {

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

00 O Ui W N

[I I R N B N B N R e e e e S e =
DU W OO0 Uk W~ OO

case 0: /* Provide code to handle such a situation */

execvp(cmd_line, NULL);
exit (EXIT_FAILURE);

case -1: /* Provide code to handle such a situation */
exit (EXIT_FAILURE);
default: /* Provide code to handle such a situation */

wait (NULL);
}
}
}

Notes : une fois la commande lue, la premiere étape est de créer un nouveau processus. Cela se fait a ’aide
de la fonction fork (ligne 16). Cette fonction crée un nouveau processus. Le nouveau processus (processus
enfant) est une copie du processus d’origine (processus parent), y compris 'instruction en cours d’exécution. Le
processus parent et le processus enfant sortent donc tous les deux de la fonction fork.

Dans le processus parent, fork renvoie 'identifiant du processus enfant, strictement positif. Ce processus
parent exécute donc le cas default (ligne 28) du switch. Ce processus parent doit attendre que le processus
enfant (qui exécute la commande) se termine. On appelle donc la fonction wait qui va bloquer jusqu'a ce que
le processus enfant se termine. La fonction wait permet d’obtenir des informations sur le processus enfant qui
s’est terminé (identifiant et cause de 1'arrét), ce qui n’est pas nécessaire ici.

Dans le processus enfant, fork renvoie 0. Ce processus enfant exécute donc le cas 0 (ligne 19). Il appelle
execvp qui permet de remplacer le code du processus par le contenu d’un fichier exécutable (ici la commande
a exécuter). En cas de succes execvp ne retourne pas (tout le code est remplacé par un autre). En cas d’échec
execvp retourne et on arréte le processus enfant par un appel a exit (ligne 22). L’appel a execvp a été
simplifié ici : la fonction doit prendre un tableau en deuxieme argument, dont le premier élément est le nom de
I’exécutable, les suivants les éventuels arguments supplémentaires et doit se terminer par la valeur NULL.

Si fork échoue, il retourne -1, ce qui permet de déclencher 'appel & exit ligne 26.

Question 11 (3 points)

initialization() {

int reader_count = O0;
semaphore mtx; // protect reader_count
semaphore wrt; // exzclusive access (for writer)

init_semaphore(mtx, 1);
init_semaphore(wrt, 1);

}

writer (file) {
wait (wrt);
write(file,
signal (wrt);

"...usomething,...");

}

reader (file) {
wait (mtx);
reader_count++;
if (reader_count == 1)
wait (wrt);
signal (mtx);

read(file);
wait (mtx);

reader_count--;
if (reader_count == 0)

27 signal (wrt);
28 signal (mtx);
29 }

Note : il s’agit ici du probléme classique lecteur/écrivain simplifié car nous supposons qu’il n’y a pas un flux
ininterrompu de lecteurs, il n’y a donc pas besoin de gérer la famine des écrivains.

La premieére étape est de garantir 'acces exclusif : soit un écrivain, soit un (ou plusieurs) lecteur, mais pas
les deux en méme temps. Ce acces exclusif est assuré par le sémaphore wrt, initialisé a 1.

Si un écrivain arrive, il appelle wait sur wrt (ligne 10).

— Si le compteur du sémaphore est a 1, il passe a 0, la fonction wait retourne et ’écrivain peut ainsi faire
son écriture (ligne 11). Une fois ’écriture terminée, I’écrivain appelle signal sur wrt (ligne 12), ce qui
permet de débloquer éventuellement un lecteur ou un (premier) écrivain qui serait bloqué sur 'opération
wait sur ce sémaphore.

— Si le compteur du sémaphore est inférieur ou égal & 0 (un écrivain ou un lecteur est déja présent), la
fonction wait bloque et 1’écrivain ne peut pas faire I’écriture pour le moment. Il sera débloqué par un
appel a signal sur ce sémaphore.

Coté lecteur, le comportement sera différent si on est le premier lecteur ou non.

Si on est le premier lecteur, il est nécessaire de garantir I’exclusion avec les écrivains. Le premier lecteur
appelle donc wait (ligne 19) sur le sémaphore wrt (le méme qu’utilisé précédemment). Si un écrivain est présent,
wait va bloquer. Lorsque le dernier lecteur a terminé, le sémaphore peut étre rendu (pour débloquer un éventuel
écrivain arrivé entre temps) grace a signal (ligne 27).

Pour savoir si un lecteur est le premier/dernier ou non, il est nécessaire d’avoir une variable partagée
comptant le nombre de lecteurs (reader_count). Cette variable est incrémentée au début d’un lecteur (ligne
17) et décrémentée a la fin (ligne 25). Cependant, comme toute variable partagée, 'acces a celle-ci doit étre
protégé. Cela peut se faire a I’aide d’un muter ou d’un sémaphore utilisé en verrou. Dans la solution ici, c’est
cette derniére option qui est retenue. Le sémaphore verrou est mtx. On appelle wait dessus (lignes 16 et 24)
avant toute manipulation de la variable et signal (lignes 20 et 28) apres.

Question 12 (2 points)

Waiting times (ms)

Algorithm | P1 | P2 | P3 | P4 | P5
FCFS 0) 8 9 17
Priority 16 | 0 3 4 12
RR, q=4 12 | 4 7 13 | 12

FCFS = Premier arrivé, premier servi (sans notion de priorité) :

— t =0 ms, P1 débute son exécution, P2, P3, P4 et P5 attendent

— t =5 ms, P1 se termine en n’ayant jamais attendu, P2 débute son exécution, P3, P4 et P5 attendent

— t = 8 ms, P2 se termine en ayant attendu au total 5 ms (entre t = 0 et ¢t = 5), P3 débute son exécution,
P4 et P5 attendent

— t =9 ms, P3 se termine en ayant attendu au total 8 ms (entre t = 0 et ¢t = 8), P4 débute son exécution,
P5 attend

— t =17 ms, P4 se termine en ayant attendu au total 9 ms (entre t = 0 et t = 9), P5 débute son exécution

— t =21 ms, P5 se termine en ayant attendu au total 17 ms (entre ¢t =0 et ¢t = 17)

Priorité :

— t =0 ms, P2 débute son exécution, P1, P3, P4 et P5 attendent

— t =3 ms, P2 se termine en n’ayant jamais attendu, P3 débute son exécution, P1, P4 et P5 attendent

— t =4 ms, P3 se termine en ayant attendu au total 3 ms (entre t = 0 et ¢ = 3), P4 débute son exécution,
P1 et P5 attendent

— t =12 ms, P4 se termine en ayant attendu au total 4 ms (entre ¢t = 0 et t = 4), P5 débute son exécution,
P1 attend

— t = 16 ms, P5 se termine en ayant attendu au total 12 ms (entre ¢t = 0 et t = 12), P1 débute son exécution

— t =21 ms, P1 se termine en ayant attendu au total 16 ms (entre t = 0 et ¢t = 16)

Tourniquet (RR), sans notion de priorité, avec quantum de temps de 4 ms :

— t =0 ms, P1 débute son exécution, P2, P3, P4 et P5 attendent

— ¢ =4 ms, P1 est mis en attente sans avoir fini (il lui reste 1 ms), P2 débute son exécution, P1, P3, P4 et
P5 attendent

— t =7 ms, P2 se termine en ayant attendu au total 4 ms (entre t = 0 et ¢t = 4), P3 débute son exécution,
P1, P4 et P5 attendent

— t = 8 ms, P3 se termine en ayant attendu au total 7 ms (entre t = 0 et ¢ = 7), P4 débute son exécution,
P1 et P5 attendent

t = 12 ms, P4 est mis en attente sans avoir fini (il lui reste 4 ms), P5 débute son exécution, P1 et P4
attendent

t = 16 ms, P5 se termine en ayant attendu au total 12 ms (entre ¢ = 0 et ¢ = 12), P1 reprend son
exécution, P4 attend

t = 17 ms, P1 se termine en ayant attendu au total 12 ms (entre ¢ = 4 et ¢ = 16), P4 reprend son
exécution

t = 21 ms, P4 se termine en ayant attendu au total 13 ms (entre t =0 et t = 8 et entre t = 12 et t = 17)

