
3TC31 (ex. INF107)

Examen final
Éléments de correction

2024–2025

Part 1 (6 points / 25 minutes)
Combinatorial Logics
Question 1 (1 point)

i s1 s0 o0 o1 o2 o3
0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
0 1 1 0 0 0 0
1 0 0 1 0 0 0
1 0 1 0 1 0 0
1 1 0 0 0 1 0
1 1 1 0 0 0 1

Question 2 (1 point)

Decoder

s0

s1

y0
o0

y1
o1

y2
o2

y3
o3

i

RISC-V Processor
Question 3 (2 points)

pc instr rs1 rs2 rd op ALUsrc imm op1 op2 res / Addr WData RData write load store wrdata
0 0x401101b3 2 1 3 − 1 x 8 4 4 x x 1 0 0 4
4 0x0081a203 3 x 4 + 0 8 4 8 12 x 80 1 1 0 80

Question 4 (2 points)

1

1 foo:
2 ... // do something interesting
3 jr ra // jump back to return address
4
5 main:
6 addi sp, sp, -8
7 sw s0, 8(sp)
8 sw s1, 4(sp)
9

10 jal ra, foo // call function foo
11
12 lw s1, 4(sp)
13 lw s0, 8(sp)
14 addi sp, sp, 8

Explications : avant l’appel à la fonction foo (jal ligne 10), il faut sauvegarder le contenu des registres s0
et s1 dans la pile. Le registre sp contient l’adresse du sommet de la pile (plus précisément la case libre à utiliser
pour stocker la prochaine donnée dans la pile). La première étape est de réserver 8 octets dans la pile (pour
y stocker s0 et s1 chacun sur 4 octets). Comme la pile croît vers les adresses basses, cette opération se fait
en décrémentant sp de 8 (ligne 6). On réalise cette opération en premier pour s’assurer qu’à tout moment, sp
pointe bien vers une case non utilisée dans la pile (pour assurer un bon fonctionnement en cas d’interruption
par exemple). Les deux cases libres sont maintenant aux adresses sp + 4 et sp + 8. On stocke donc (lignes 7 et
8) le contenu des registres s0 et s1 à ces deux adresses.

Une fois la fonction foo terminée, il faut relire le contenu de la pile pour restaurer l’état des registres s0 et
s1 (lignes 12 et 13), puis de libérer ces deux cases en incrémentant sp de 8 (ligne 14).

Part 2 (8 points / 40 minutes)
Question 5 (1 point)

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[]) {
int a = 42;
int *b = &a; // L1
*b = 43; // L2
printf("a = %d\n", a); // L3
return EXIT_SUCCESS;

}

— b est un pointeur, de type int *
— & retourne l’adresse de son argument, ici l’adresse de la variable a
— La ligne L2 stocke la valeur 43 à l’adresse contenu dans le pointeur b (c’est-à-dire dans la variable a)
— Le programme affiche a = 43

Question 6 (1 point)

enum op_e { PLUS, MINUS, MULT, DIV, NUM };
typedef enum op_e op_t;

Question 7 (1 point)

op_t char_to_op(char c)
{

switch (c)
{

case '+': return PLUS;
case '-': return MINUS;
case '*': return MULT;

2

case '/': return DIV;
default:

fprintf(stderr, "Invalid operator: %c.\n", c);
exit(EXIT_FAILURE);

}
}

Question 8 (1 point)

struct expr_s
{

op_t op; // operator
int num; // value when operator if N, 0 otherwise
struct expr_s *l; // left expression or NULL
struct expr_s *r; // right expression or NULL

};

typedef struct expr_s expr_t;

Question 9 (2 points)

int eval_expr(const expr_t *e)
{

if (e->op == NUM)
return e->num;

else
{

int l = eval_expr(e->l);
int r = eval_expr(e->r);

switch (e->op)
{

case PLUS: return l + r;
case MINUS: return l - r;
case MULT: return l * r;
case DIV: return l / r;

default:
exit(EXIT_FAILURE);

}
}

}

Question 10 (2 points)

parse_result_t parse_expr(const char *str)
{

parse_result_t result;

// Process first character of remaining string to be parsed.
switch (*str)
{

// An operator was detected ...
case '+': case '-':
case '*': case '/':
{

// Continue parsing the left and right child sub-expression using recursive calls:
// TODO (3): provide the arguments to the recursive calls

3

parse_result_t l = parse_expr(str + 1);
parse_result_t r = parse_expr(l.str);

// Return value: str points to the character after the right operand
// TODO (4): assign a value to result.str
result.str = r.str;

// Return value: e represents the parsed expression
result.e = malloc(sizeof(expr_t));
result.e->op = char_to_op(*str);
result.e->n = 0;
result.e->l = l.e;
result.e->r = r.e;

return result;
}

// The beginning of an integer number was detected ...
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
{

// Convert character to integer number
int n = *str - '0';

// Return value: str points to the character after the digit
result.str = str + 1;

// Return value: e represents the parsed expression

// TODO (1): allocate a new expression on the heap and store it in result.e
result.e = malloc(sizeof(expr_t));
if (result.e == NULL)
{

perror("Allocate NUM");
exit(EXIT_FAILURE);

}

// TODO (2): assign struct members of result.e (using n)
result.e->op = NUM;
result.e->num = n;
result.e->l = NULL;
result.e->r = NULL;

return result;
}

// Unexpected end of string: display an error
case '\0':

fprintf(stderr, "Unexpected end of expression\n");
exit(EXIT_FAILURE);

default:
fprintf(stderr, "Invalid character in expression: %c.\n", *str);
exit(EXIT_FAILURE);

}
}

4

Part 3 (6 points / 25 minutes)
Question 11 (3 points)

1 #include <assert.h>
2 #include <fcntl.h>
3 #include <stdlib.h>
4 #include <unistd.h>
5
6 int swap_bytes(int fd, int offset);
7
8 int main(int argc, char *argv[]) {
9 if (argc != 2) return;

10 int fd = open(argv[1], O_RDWR);
11 for (int offset = 1; swap_bytes(fd, offset); offset++);
12 close(fd);
13 }
14
15 int swap_bytes(int fd, int offset) {
16 int rv;
17 char left, right;
18
19 rv = lseek(fd, offset - 1, SEEK_SET);
20 assert(0 <= rv);
21 rv = read(fd, &left, sizeof(left));
22 assert(rv == 1);
23
24 rv = lseek(fd, -offset, SEEK_END);
25 assert(0 <= rv);
26
27 if (rv < offset) return 0;
28
29 rv = read(fd, &right, sizeof(right));
30 assert(rv == 1);
31
32 rv = lseek(fd, offset - 1, SEEK_SET);
33 assert(0 <= rv);
34
35 rv = write(fd, &right, sizeof(right));
36 assert(rv == 1);
37
38 rv = lseek(fd, -offset, SEEK_END);
39 assert(0 <= rv);
40
41 rv = write(fd, &left, sizeof(left));
42 assert(rv == 1);
43
44 return 1;
45 }

Quelques remarques. On notera ici l’utilisation de assert, une macro qui prend en paramètre une expression
et qui termine le programme en affichant un message d’erreur si cette expression est évaluée à une valeur fausse
(égale à 0).

On notera également que offset, tel qu’il est utilisé dans la boucle for ligne 11, commence par la valeur 1
(et non 0). D’où l’utilisation de offset - 1 ligne 19 lors de l’appel à lseek.

En cas de succès, lseek renvoie la nouvelle position dans le fichier, exprimée à partir du début du fichier.
C’est ainsi que l’on peut élégamment savoir si offset est plus grand que la moitié du fichier ligne 27.

Enfin, on remarquera que le corps de la boucle for ligne 11 est vide. Ce n’est pas une erreur, en effet, tout
est fait dans la condition d’itération, à la fois l’appel à swap_bytes et, en fonction de sa valeur de retour, le test
pour savoir si on a dépassé la moitié du fichier. On peut réécrire plus lisiblement swap_bytes(fs, offset) !=
0.

5

Question 12 (1 point)

initialization() {
init_sem(c1_finished , 0);

}

T1() {
C1;
signal(c1_finished);

}

T2() {
wait(c1_finished);
C2;

}

Il s’agit exactement de l’exemple contenu dans le cours.
Si le thread T2 arrive à wait avant que le processus T1 ait fini C1 (donc avant qu’il n’ait appelé signal, le

compteur associé au sémaphore vaut 0 et donc la fonction wait va bloquer le thread T2 jusqu’à ce que le thread
T1 ait appelé signal.

Si le thread T1 fini C1 et appelle signal avant que T2 n’ait appelé wait, le compteur du sémaphore passe à
1. Donc quand T2 fera le wait, la fonction ne bloquera pas et il pourra poursuivre pour faire C2.

Question 13 (2 points)

initialization() {
init_sem(c1_finished , 0);
init_sem(c2_finished , 0);
init_sem(c3_finished , 0);

}

T1() {
C1;
signal(c1_finished);
wait(c2_finished);
C3;
signal(c3_finished);
print("Bye.");

}

T2() {
wait(c1_finished);
C2;
signal(c2_finished);
wait(c3_finished);
print("Bye.");

}

Il s’agit d’une simple extension de la question précédente.

6

