3TC31 (ex. INF107)

Examen final

Eléments de correction

2024-2025

Part 1 (6 points / 25 minutes)

Combinatorial Logics

Question 1 (1 point)

—

e e B en B an B an] Bt
——_ O Ol = OO W

}—‘Ob—‘Ob—‘Oi—‘OCC)IJ

OOOHOOOOOQ

OO)—‘OOOOOS

OP—‘OOOOCDCDMQ
HOOOOOOOS

Question 2 (1 point)

S1 —

S0 —

Yo

U1

Decoder

Y2

Ys

)}
S

-
v

RISC-V Processor

Question 3 (2 points)

QS
58]

slelvls

pc | instr rsl | rs2 | rd | op | ALUsrc | imm | opl | op2 | res / Addr | WData | RData | write | load | store | wrdata
0 0x401101b3 | 2 1 — 1 X 8 4 4 X X 1 0 0 4
4 0x0081a203 | 3 X 4 + | 0 8 4 8 12 X 80 1 1 0 80

Question 4 (2 points)

0O Ui Wi+

— e e e
= w N — O o

H
o
()

.. // do something interesting
jr ra // jump back to return address

main:
addi sp, sp, -8
sw s0, 8(sp)
sw sl1, 4(sp)

jal ra, foo // call function foo

lw s1, 4(sp)
lw s0, 8(sp)
addi sp, sp, 8

Explications : avant lappel & la fonction foo (jal ligne 10), il faut sauvegarder le contenu des registres s0
et s1 dans la pile. Le registre sp contient I’adresse du sommet de la pile (plus précisément la case libre & utiliser
pour stocker la prochaine donnée dans la pile). La premiére étape est de réserver 8 octets dans la pile (pour
y stocker sO et s1 chacun sur 4 octets). Comme la pile croit vers les adresses basses, cette opération se fait
en décrémentant sp de 8 (ligne 6). On réalise cette opération en premier pour s’assurer qu’a tout moment, sp
pointe bien vers une case non utilisée dans la pile (pour assurer un bon fonctionnement en cas d’interruption
par exemple). Les deux cases libres sont maintenant aux adresses sp + 4 et sp + 8. On stocke donc (lignes 7 et
8) le contenu des registres s0 et s1 a ces deux adresses.

Une fois la fonction foo terminée, il faut relire le contenu de la pile pour restaurer ’état des registres s0O et
s1 (lignes 12 et 13), puis de libérer ces deux cases en incrémentant sp de 8 (ligne 14).

Part 2 (8 points / 40 minutes)
Question 5 (1 point)

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[]) {
int a = 42;
int *b = &a; // L1
*b = 43; // L2
printf ("ay=y%d\n", a); // L3
return EXIT_SUCCESS;

— b est un pointeur, de type int *

— & retourne 'adresse de son argument, ici I’adresse de la variable a

— La ligne L2 stocke la valeur 43 a I’adresse contenu dans le pointeur b (c¢’est-a-dire dans la variable a)
— Le programme affiche a = 43

Question 6 (1 point)

enum op_e { PLUS, MINUS, MULT, DIV, NUM };
typedef enum op_e op_t;

Question 7 (1 point)

op_t char_to_op(char c)

{
switch (c)
{
case '+': return PLUS;
case '-': return MINUS;
case 'x': return MULT;

case '/': return DIV;

default:
fprintf (stderr, "Invalidgoperator: %c.\n", c);
exit (EXIT_FAILURE);

Question 8 (1 point)

struct expr_s

{
op_t op; // operator
int num; // value when operator 4if N, 0 otherwise
struct expr_s *1; // left ezpression or NULL
struct expr_s *r; // right expression or NULL
s

typedef struct expr_s expr_t;

Question 9 (2 points)

int eval_expr (const expr_t *e)

{
if (e->op == NUM)
return e->num;
else
{
int 1 = eval_expr(e->1);
int r = eval_expr(e->r);
switch (e->op)
{
case PLUS: return 1 + r;
case MINUS: return 1 - r;
case MULT: return 1 * r;
case DIV: return 1 / r;
default:
exit (EXIT_FAILURE);
}
}
}

Question 10 (2 points)

parse_result_t parse_expr(const char *str)

{

parse_result_t result;

// Process first character of remaining string to be parsed.
switch (*str)

{
// An operator was detected
case '+': case '-':
case 'x': case '/':
{

// Continue parsing the left and right child sub-expression using recursive calls:
// TODO (3): provide the arguments to the recursive calls

parse_result_t 1 = parse_expr(str + 1);
parse_result_t r parse_expr(l.str);

// Return wvalue: str points to the character after the right operand
// TODO (4): assign a value to result.str
result.str = r.str;

// Return value: e represents the parsed expresstion

result.e = malloc(sizeof (expr_t));
result.e->op = char_to_op(*str);
result.e->n = 0;

result.e->1 = 1l.e;

result.e->r = r.e;

return result;

}

// The beginning of an integer number was detected
case '0O': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
{

// Convert character to integer number
int n = *xstr - '0';

// Return wvalue: str points to the character after the digit
result.str = str + 1;

// Return value: e represents the parsed expression

// TODO (1): allocate a mew ezpression on the heap and store it in result.e

result.e = malloc(sizeof (expr_t));
if (result.e == NULL)
{

perror ("Allocate NUM");
exit (EXIT_FAILURE);
}

// TODO (2): assign struct members of result.e (using n)
result.e->op = NUM;
result.e->num = n;
result.e->1 = NULL;
result.e->r NULL;

return result;

b
// Unezxpected end of string: display an error
case '\0':
fprintf (stderr, "Unexpected end of_ expression\n");

exit (EXIT_FAILURE);

default:
fprintf (stderr, "Invalid,character in expression: %c.\n", *str);
exit (EXIT_FAILURE);

OO UL W N+

R R R R R O 0 0 W W W W W W LW NNDNDNDNDNDDNDNDNDN R R e e e e
Ul W N HEF O OO Ulk WINFR, OO Utk WP OO0 Utk W~ OO

Part 3 (6 points / 25 minutes)

Question 11 (3 points)

#include <assert.h>
#include <fcntl.h>
#include <stdlib.h>
#include <unistd.h>

int

int

int

Quelques remarques. On notera ici I'utilisation de assert, une macro qui prend en parametre une expression
et qui termine le programme en affichant un message d’erreur si cette expression est évaluée a une valeur fausse

swap_bytes (int fd, int offset);

main(int argc, char *argv[]) {

if (argc != 2) return;

int fd = open(argv([1], O_RDWR);

for (int offset = 1; swap_bytes(fd, offset); offset++);
close(fd);

swap_bytes (int fd, int offset) {
int rv;
char left, right;

rv = lseek(fd, offset - 1, SEEK_SET);
assert (0 <= rv);

rv = read(fd, &left, sizeof (left));
assert(rv == 1);

rv = lseek(fd, -offset, SEEK_END);
assert (0 <= rv);

if (rv < offset) return O;

rv = read(fd, &right, sizeof (right));
assert(rv == 1);

rv = lseek(fd, offset - 1, SEEK_SET);
assert (0 <= rv);

rv = write(fd, &right, sizeof(right));
assert(rv == 1);

rv = lseek(fd, -offset, SEEK_END);
assert (0 <= rv);

rv = write(fd, &left, sizeof (left));
assert(rv == 1);

return 1;

(égale & 0).

On notera également que offset, tel qu’il est utilisé dans la boucle for ligne 11, commence par la valeur 1

(et non 0). D’ou l'utilisation de offset - 1 ligne 19 lors de l'appel a 1lseek.

En cas de succes, 1seek renvoie la nouvelle position dans le fichier, exprimée a partir du début du fichier.
C’est ainsi que 'on peut élégamment savoir si offset est plus grand que la moitié du fichier ligne 27.

Enfin, on remarquera que le corps de la boucle for ligne 11 est vide. Ce n’est pas une erreur, en effet, tout
est fait dans la condition d’itération, a la fois I'appel & swap_bytes et, en fonction de sa valeur de retour, le test
pour savoir si on a dépassé la moitié du fichier. On peut réécrire plus lisiblement swap_bytes(fs, offset) !=

0.

Question 12 (1 point)

initialization() {
init_sem(c1_finished, 0);

}

T1O {
Ci;
signal(cl_finished);

}

T20 {
wait(cl_finished);
C2;

X

Il s’agit exactement de ’exemple contenu dans le cours.

Si le thread T2 arrive & wait avant que le processus T1 ait fini C1 (donc avant qu’il n’ait appelé signal, le
compteur associé au sémaphore vaut 0 et donc la fonction wait va bloquer le thread T2 jusqu’a ce que le thread
T1 ait appelé signal.

Si le thread T1 fini C1 et appelle signal avant que T2 n’ait appelé wait, le compteur du sémaphore passe a
1. Donc quand T2 fera le wait, la fonction ne bloquera pas et il pourra poursuivre pour faire C2.

Question 13 (2 points)

initialization() {
init_sem(cl_finished, 0);
init_sem(c2_finished, 0);
init_sem(c3_finished, 0);

}

T10O {
C1;
signal(cl_finished);
wait(c2_finished);
C3;
signal(c3_finished);
print ("Bye.");

}

T20 {
wait(cl_finished);
C2;
signal(c2_finished);
wait (c3_finished);
print ("Bye.");

Il s’agit d’une simple extension de la question précédente.

