3TC31 (ex. INF107)

Examen final
Eléments de correction

2025-2026

Partie 1 (3 points / 15 minutes)

Question 1 (0.5 points)

La valeur, en décimal, du nombre représenté en complément a 2 sur 5 bits par la valeur 10000 est —16.
En effet, on se souvient que la valeur d’un nombre représenté en complément & 2 sur n bits (ap—1a,—2 - .. a1ag)
est —an 12" 4+ 312 ;20 soit ici —1x 28 0 x 22 +0x 22+ 0 x 2" 40 x 20 = —16.

Question 2 (1 point)

L

clk

enable

Lorsque le signal enable vaut 1, le signal D est présenté directement en entrée de la bascule D. Donc si un
front montant se produit sur ’entrée d’horloge clk, la sortie Q de la bascule prendra la valeur de D.

Si enable vaut 0, la valeur actuelle de la sortie Q est présentée en entrée de la bascule. Donc si un front
montant se produit sur I’entrée d’horloge c1k, la sortie Q prendra la valeur de ’entrée de la bascule, c’est-a-dire
la valeur actuelle de Q. La sortie Q conservera donc sa valeur.

Le reste du temps (en 'absence de front montant sur ’horloge), la sortie Q de la bascule conserve sa valeur
(fonctionnement normal d’une bascule).

Note : Une autre réponse revient trés souvent. Elle consiste & ajouter une porte logique ET (AND) dont
les entrées sont ’horloge clk et le signal enable et d’utiliser la sortie de cette porte comme horloge d’une
bascule classique. On s’interdit explicitement cette construction dans le cadre de ce cours ('utilisation de logique
combinatoire sur le chemin de ’horloge entraine un décalage des fronts montants utilisés pour déclencher les
bascules au sein du circuit et des risques de faux fronts causés par le temps de propagation au sein de la logique).

Question 3 (1 point)

On rappelle que toutes les bascules fonctionnent sur la méme horloge. Au moment d’un front montant
d’horloge, chaque bascule va échantillonner son entrée et recopier cette valeur sur sa sortie, avec un petit temps
de retard : le temps de propagation t.,. Cette valeur va ensuite se propager dans la logique combinatoire en aval
de la bascule, ce qui va prendre du temps (le temps de propagation dans la logique combinatoire rencontrée).
Il faut enfin arriver en entrée de la bascule suivante au plus tard ts, avant le front montant d’horloge suivant
pour que cette bascule échantillonne correctement le résultat du calcul.

© 00~ O U Wi+

Sur le schéma, si on considere les bascules 1 et 2 : lors d’un premier front montant, la bascule 1 recopie son
entrée sur sa sortie. Donc aprés t.,, la sortie de la bascule 1 (donc 'entrée de la fonction combinatoire F') est
stable. Il faut ensuite ¢ty pour que la sortie de F' (et donc l'entrée de G) soit stable. Il faut ensuite t¢ pour que
la sortie de GG soit stable. Cette sortie, qui est '’entrée de la bascule 2 doit étre stable au plus tard tg, avant le
front d’horloge suivant pour que la bascule 2 échantillonne un résultat correct. Donc en considérant uniquement
les bascules 1 et 2, la période d’horloge T doit étre supérieure ou égale a t., +tp+ta+tsy = 14+4+4+1=10
ns.

Ce raisonnement doit étre étendu a tout le circuit en considérant tous les chemins partant d’une sortie d’une
bascule a I'entrée de la bascule suivante, c¢’est-a-dire dans notre cas :

— de la bascule 1 & la bascule 2 : Ty > teo +tp + te + tsu (10 ns)

— de la bascule 1 & la bascule 3 : Ty > teo + tp + sy (6 ns)

— de la bascule 2 a la bascule 4 : Ty > teo +ti + tsy (5 ns)

— de la bascule 3 a la bascule 4 : Ty > teo +ti + tsy (5 ns)

Le chemin critique (le chemin combinatoire le plus long entre la sortie d’une bascule et 'entrée de la bascule
suivante), qui est donc celui qui contraint le plus la période d’horloge (et donc sa fréquence) est le chemin entre
la bascule 1 et la 2.

La période minimale d’horloge est donc 10 ns, et donc la fréquence maximale de celle-ci est de 100 MHz.

Question 4 (0.5 points)

L’instruction assembleur RISC-V addi x1, x2, 42 additionne le contenu du registre x2 avec la valeur
immédiate 42 et stocke le résultat dans le registre x1.

La valeur 42 est un immédiat. Elle est stockée directement dans certains des 32 bits de Uinstruction (les bits
31 & 20 pour étre précis).

Partie 2 (3 points / 15 minutes)
Question 5 (0.5 points)

#include <stdlib.h>
#include <stdio.h>

int main(int argc, char *argv[]) {
int * p;
*p = 42;
printf ("xpy=_%d\n", *p);
return EXIT_SUCCESS;
}

Le programme va planter avec une erreur de segmentation. C’était le piege de I’examen. En effet, ligne 5, on
définit un pointeur. Le compilateur va donc allouer de la mémoire pour stocker la valeur de ce pointeur (dans le
cas présent sur la pile puisqu’il s’agit d’une variable locale). Cependant, le pointeur n’est pas initialisé (aucune
valeur explicite n’est affectée au pointeur). Sa valeur est donc non définie (en pratique, comme c’est une variable
locale, il vaudra la valeur précédente stockée dans la pile) et peut valoir n’importe quoi.

Or dans la ligne suivante, on déréférence le pointeur, c’est-a-dire que I'on prend sa valeur (qui est n’importe
quoi) et on l'utilise comme adresse, et on stocke la valeur 42 & cette adresse en mémoire. On va donc écrire la
valeur 42 un peu n’importe ot en mémoire, et donc tres certainement a une adresse non allouée ou a laquelle
on n’a pas le droit d’écrire, ce qui va déclencher une erreur de segmentation.

Moralité : on ne déréférence jamais un pointeur dans lequel on n’a pas mis une valeur sensée (adresse d’une
variable allouée, résultat d’'un malloc...).

Question 6 (1 point)

Le programme affiche : a=1 b=2. En effet, le passage des arguments aux fonctions en C se fait par copie. La
fonction swap regoit donc une copie des valeurs passées par main. Elle va donc intervertir la valeur de ces copies,
copies qui vont disparaitre a la fin de la fonction swap. La fonction main ne voit donc pas de modifications.

Pour palier ce probléme, on va modifier la fonction swap pour qu’elle regoive non pas la valeur de ses
arguments mais les adresses auxquelles ils sont stockés.

#include <stdlib.h>
#include <stdio.h>

void swap(int *a, int *b) {
int ¢ = *xa;
ka = *xb;
*b = *c;

}

int main(int argc, char *xargv[]) {
int a = 1;
int b = 2;
swap (&a, &b);
printf ("a=%d_ b=%d\n", a, Db);
return EXIT_SUCCESS;

}

Question 7 (1.5 points)

void display(struct node *head) {
if (head == NULL) {
printf ("Listevide\n");
return;

3

struct node *p = head;
while (*p != NULL) {
printf ("%d\n", p->value);
P = p->next;
}
}

Remarque : Une liste chainée est représentée par un pointeur vers son premier maillon (donc ici un type
struct node *). Si ce pointeur vaut NULL, cela indique que la liste ne contient méme pas de premier maillon,
donc qu’elle est vide.

Part 3 (14 points / 60 minutes)

Exercice 1 : Entrées/Sorties bas niveau

Question 8 (4 points)

1 typedef struct {

2 int id;

3 char name [32];

4 double value;

5 } object_t;

6

7 void read_object_at(int fd, size_t index, object_t *obj) {
8 off_t offset = index * sizeof (object_t);

9

10 if (lseek(fd, offset, SEEK_SET) == -1)

11 exit (EXIT_FAILURE);

12

13 ssize_t n = read(fd, obj, sizeof (object_t));

14 if (n != sizeof (object_t))

15 exit (EXIT_FAILURE);

16 }

17

18 void write_object_at(int fd, size_t index, object_t *obj) {
19 off _t offset = index * sizeof (object_t);

20

21
22
23
24
25
26
27

0O Ui Wi

I I R R e e el e e e
W OO0 Uk W~ OO

if (lseek(fd, offset, SEEK_SET) == -1)
exit (EXIT_FAILURE);

ssize_t n = write(fd, obj, sizeof (object_t));
if (n != sizeof (object_t))
exit (EXIT_FAILURE);

Les objets sont stockés les uns a la suite des autres dans le fichier (que I'on suppose déja ouvert et représenté
par le descripteur de fichier £d). Chaque objet est stocké dans le fichier directement tel qu’il est représenté en
mémoire. Chaque objet prend donc sizeof (object_t) octets dans le fichier.

Quand 'on souhaite lire ou écrire 'objet numéro index, il faut donc dans un premier temps se positionner
correctement dans le fichier. Les objets étant numérotés a partir de zéro, I'objet index commence & partir de
loctet index * sizeof (object_t) (lignes 8 et 19). On appelle ensuite 1seek pour changer la position courante
dans le fichier vers 'octet en question (il s’agit donc d’une position calculée a partir du début du fichier d’ou la
valeur SEEK_SET en troisiéme argument de appel & 1seek). En cas d’erreur (par exemple si la position est au
dela de la fin du fichier), 1seek retourne la valeur -1. Dans ce cas, on appelle exit pour arréter immédiatement
Pexécution (lignes 11 et 22).

Une fois bien positionné, on appelle read (ou write) pour lire (ou écrire) sizeof (object_t) octets, depuis
la positon courante, vers (depuis) l’adresse fournie par le pointeur obj en mémoire. read retourne le nombre
d’octets lus (qui peut étre inférieur au nombre d’octets demandés) ou -1 en cas d’erreur. Le seul cas ou tout
s’est bien passé est quand read renvoie sizeof (object_t) d’ou le test ligne 14 et 25.

Exercice 2 : Processus et parallélisme
Question 9 (2 points)

Voir ci-dessous
Question 10 (1 point)

void process_partition(int fd, off_t first, off_t last) {
if (last - first <= 2)
return;

off _t pivot = partition_file(fd, start, end);

// Question 9

pid_t left = fork();

if (left == 0) {
process_partition(fd, first, pivot);
exit (EXIT_SUCCESS);

pid_t right = fork();

if (right == 0) {
process_partition(fd, pivot + 1, last);
exit (EXIT_SUCCESS);

}

// Question 10
wait (NULL);
wait (NULL);

Ligne 8, on créé un premier processus enfant grace a fork. On a maintenant deux processus qui sortent de
lappel & fork (le processus originel, processus parent, et le nouveau processus, le processus enfant). Dans le
processus parent, fork renvoie une valeur non nulle correspondant a I’identifiant du processus enfant. Dans le
processus enfant, fork renvoie 0. Donc seul le processus enfant entre dans le corps du if lignes 10 et 11.

Le processus parent, et uniquement lui, ne rentre pas dans le if et continue ligne 14. A ce moment 13, un
second processus enfant est créé par le processus parent. Le second processus enfant exécute le corps du if
lignes 16 et 17.

Le

processus parent quant a lui va ensuite exécuter deux fois wait. Chaque appel a wait va bloquer jusqu’a

ce que 'un des deux processus enfants se termine (événement qui peut s’étre produit avant ’appel a la fonction).

Exercice 3 : Ordonnancement

Question 11 (3 points)

Temps d’attente :

Temps d’attente (ms)

Algorithme | P1 | P2 | P3 | P4 | P5
FCFS 0 5 8 9 17
SJF 8 1 0 13 | 4

RR, q=3 10 | 3 6 13 | 15

Premier arrivé, premier servi (sans notion de priorité) :

t = 0 ms, P1 débute son exécution, P2, P3, P4 et P5 attendent

t =5 ms, P1 se termine en n’ayant jamais attendu, P2 débute son exécution, P3, P4 et P5 attendent

t = 8 ms, P2 se termine en ayant attendu au total 5 ms (entre t = 0 et ¢ = 5), P3 débute son exécution,
P4 et P5 attendent

t =9 ms, P3 se termine en ayant attendu au total 8 ms (entre t = 0 et ¢t = 8), P4 débute son exécution,
P5 attend

t = 17 ms, P4 se termine en ayant attendu au total 9 ms (entre t = 0 et ¢ = 9), P5 débute son exécution
t = 21 ms, P5 se termine en ayant attendu au total 17 ms (entre t = 0 et ¢t = 17)

Le plus court d’abord (sans notion de priorité) :

t = 0 ms, P3 débute son exécution, P1, P2, P4 et P5 attendent

t =1 ms, P3 se termine en n’ayant jamais attendu, P2 débute son exécution, P1, P4 et P5 attendent

t = 4 ms, P2 se termine en ayant attendu au total 1 ms (entre ¢t = 0 et ¢t = 1), P5 débute son exécution,
P1 et P4 attendent

t = 8 ms, P5 se termine en ayant attendu au total 4 ms (entre t = 0 et ¢ = 4), P1 débute son exécution,
P4 attend

t = 13 ms, P1 se termine en ayant attendu au total 8 ms (entre t = 0 et t = 8), P4 débute son exécution
t = 21 ms, P4 se termine en ayant attendu au total 13 ms (entre t = 0 et ¢t = 13)

Tourniquet, sans notion de priorité, avec quantum de temps de 3 ms :

t = 0 ms, P1 débute son exécution, P2, P3, P4 et P5 attendent

t = 3 ms, P1 est mis en attente sans avoir fini (il lui reste 2 ms), P2 débute son exécution, P1, P3, P4 et
P5 attendent

t = 6 ms, P2 se termine en ayant attendu au total 3 ms (entre t = 0 et ¢t = 3), P3 débute son exécution,
P1, P4 et P5 attendent

t =7 ms, P3 se termine en ayant attendu au total 6 ms (entre ¢t = 0 et ¢t = 6), P4 débute son exécution,
P1 et P5 attendent

t = 10 ms, P4 est mis en attente sans avoir fini (il lui reste 5 ms), P5 débute son exécution, P1 et P4
attendent

t = 13 ms, P5 est mis en attente sans avoir fini (il lui reste 1 ms), P1 reprend son exécution, P4 et P5
attendent

t = 15 ms, P1 se termine en ayant attendu au total 10 ms (entre ¢ = 3 et ¢ = 13), P4 reprend son
exécution, P5 attend

t = 18 ms, P4 est mis en attente sans avoir fini (il lui reste 2 ms), P5 reprend son exécution, P4 attend
t = 19 ms, P5 se termine en ayant attendu au total 15 ms (entre t = 0 et t = 10 et entre t = 13 et
t = 18), P4 reprend son exécution

t = 21 ms, P4 se termine en ayant attendu au total 13 ms (entre ¢t =0 et t =7, entre t = 10 et t = 15 et
entre t = 18 et t = 19)

Exercice 4 : Synchronisation

Question 12 (2 points)

init

O A
init_sem(A_has_arrived, 0);
init_sem(B_has_arrived, 0);

barrier A() {
signal (A_has_arrived);
wait (B_has_arrived);

3

barrier B() {
signal (B_has_arrived);
wait (A_has_arrived);

Il s’agit ici directement d’une extension de 'exemple vu en cours (une action doit étre faite par un premier
processus avant qu’un second puisse faire une autre action). On utilise deux sémaphores, initialisés & 0 (donc
pour 'instant, un appel a wait sur n’importe lequel des deux va bloquer). Dés qu’'un des deux processus arrive
a la barriére de synchronisation, il va faire un appel a signal sur le sémaphore indiquant qu’il est arrivé, puis
faire un wait sur le sémaphore indiquant que I'autre processus est arrivé. Si ’autre processus n’est pas encore
arrivé, appel & signal fait passer le compteur du sémaphore passe & 1 (et donc Pappel ultérieur & wait sur ce
sémaphore ne bloquera pas). Si autre processus était déja arrivé (il est donc actuellement bloqué sur le wait),
I’appel a signal va le libérer et il pourra sortir du wait et franchir la barriere de synchronisation.

Question 13 (2 points)

#define TOTAL_THREADS N;

init () {
unsigned int count = 0; // Nombre de threads déjd arrivés
init_mtx(mutex); // Protége la wvariable partagée count

init_sem(all_arrived, 0);

}

barrier () {
lock(mutex);
count++;
if (count == N) { // Si je suis le dernier processus d arriver, je libére tout le monde
for i in 0 <= i < N { // Appel 4 signal N fois
signal(all_arrived);
¥
}
unlock (mutex) ;
wait(all_arrived); // Chaque thread attend (le dernier s'est libéré lui méme)

L’attente des processus va se faire sur un sémaphore (all_arrived) initialisé & 0 pour que deés le début,
un appel & wait dessus bloque. Le dernier processus arrivé (le N**™¢) doit faire une action particuliere. Il faut
donc savoir combien de processus sont déja en attente pour savoir si on est le dernier. Il n’est pas possible de
consulter le compteur interne d’un sémaphore (en tout cas dans I'abstraction donnée). Il est donc nécessaire
d’avoir une variable globale pour compter le nombre de processus en attente. Or, dés que 1'on a une variable
globale qui sera manipulée par les différents threads, nous devons la protéger par un verrou, d’ou le mutex.

Donc quand un processus arrive au point de sychronisation, il verrouille le mutex. Il incrémente ensuite la
variable indiquant le nombre de processus en attente. Si moins de N processus sont en attente, il déverrouille le
mutex puis fait un wait sur le sémaphore qui va le bloquer. Si N processus sont maintenant en attente, il fait
N appel a signal, qui vont débloquer les N — 1 processus actuellement bloqués dans wait, et le compteur du
sémaphore arrive & 1 (et donc le dernier wait ne bloquera pas le dernier processus).

