
3TC31 (ex. INF107)

Examen intermédiaire (deuxième partie)
Éléments de correction

2025–2026

Exercice 1 : Questions de cours (4 points / 4 minutes)
Question 1 (2 points)

— Variable locale (Automatic Storage Duration) - La pile (Stack Data) : les variables locales d’une fonction
sont stockées dans la pile

— Variable globale (Static Storage Duration) - Données globales (Global Data) : les variables globales sont
stockées dans la zone des données globales (data, rodata ou bss)

Question 2 (2 points)

1 int main(int argc, char *argv[]) {
2 int a = 4;
3 int *b = &a;
4 *b = 5;
5 return EXIT_SUCCESS;
6 }

Juste avant la fin du programme, la variable a contient la valeur 5 et la variable b contient l’adresse de la
variable a.

Ligne 2, le programme déclare une variable (locale) a, de type int initialisée à la valeur 4. Ligne 3, le
programme déclare une variable (locale) b, de type int * (c’est-à-dire pointeur vers un int), initialisée avec
l’adresse de la variable a (adresse obtenue grâce à l’opérateur &). Ligne 4, on déréférence le pointeur b grâce à
la construction *b, c’est-à-dire que l’on considère le contenu de b comme une adresse mémoire (en l’occurrence
le contenu de b est l’adresse de la variable a), et on va écrire à cette adresse la valeur 5. La valeur 5 est donc
écrite à l’adresse contenue dans b, c’est-à-dire là où se situe la variable a. La variable a prend donc la valeur 5.

Exercice 2 : Questions de cours (16 points / 26 minutes)
Question 3 (2 points)

enum kind {ZERO, ONE, NOT, XOR, REG};
typedef enum kind kind_t;

Il est possible d’écrire de manière plus concise :

typedef enum {ZERO, ONE, NOT, XOR, REG} kind_t;

Question 4 (4 points)

struct circuit {
kind_t kind;
_Bool value, next_value;
struct circuit *inputs[2];

};

typedef struct circuit circuit_t;

1

Question 5 (4 points)

_Bool step_combinational(circuit_t *c) {
switch(c->kind)
{

case ZERO:
return 0;

case ONE:
return 1;

case REG:
return c->value;

case NOT:
return !step_combinational(c->inputs[0]);

case XOR:
return step_combinational(c->inputs[0]) ^ step_combinational(c->inputs[1]);

}
return 0;

}

La fonction récupère un pointeur vers le circuit (circuit_t *). Donc pour accéder à ses membres (kind...),
il faut déréférencer ce pointeur c, soit explicitement via la construction (*c).kind (les parenthèses sont obliga-
toires à cause des priorités respectives des opérateurs * et .), soit implicitement avec la construction c->kind.

Question 6 (2 points)

void print_regs(circuit_t c[], unsigned int n) {
for(unsigned int i = 0; i < n; i++) {

if (c[i].kind == REG)
printf("%c", c[i].value ? 't' : 'f');

}
printf("\n");

}

L’opérateur ? : est un opérateur ternaire (qui prend trois opérandes) : par exemple a ? b : c. Si a est
évalué à une valeur différente de 0, l’opérande b est évalué et le résultat de l’expression a ? b : c est égal au
résultat de l’évaluation de b. Dans le cas contraire, l’opérande c est évalué et le résultat de l’expression a ? b
: c est égal au résultat de l’évaluation de c.

Donc ici, si c[i].value vaut true (différent de 0), (c[i].value ? 't' : 'f') vaut 't'. Dans le cas
contraire, l’expression (c[i].value ? 't' : 'f') vaut 'f'.

Il ne reste plus qu’à afficher le caractère, ce qui est faisable avec la chaîne de format "%c" passée en premier
argument de printf. Pour rappel, 't' est un entier égal au code ASCII correspondant au caractère t (116).
"%c" indique à printf que l’argument est un entier et qu’il doit afficher le caractère correspondant (donc ici t).

Question 7 (4 points)

1 int main(int argc, char *argv[]) {
2 circuit_t *c = malloc(4 * sizeof(circuit_t));
3 if (!c) // Ou (c == NULL)
4 {
5 perror("malloc failed:");
6 return EXIT_FAILURE;
7 }
8
9 // Create 4 circuit elements for a simple 2-bit counter:

10 circuit_t *not = &c[0], *xor = &c[1], *reg0 = &c[2], *reg1 = &c[3];
11 mk_not(not , reg0);
12 mk_xor(xor , reg0, reg1);
13 mk_reg(reg0, not);
14 mk_reg(reg1, xor);
15
16 // Simulate the 4 circuit elements for 5 clock ticks:

2

17 for(unsigned int i = 0; i < 5; i++) {
18 print_regs(c, 4);
19 step_circuit(c, 4);
20 }
21
22 free(c);
23
24 return EXIT_SUCCESS;
25 }

La ligne 10 nous permet de conclure que le tableau à allouer doit pouvoir contenir au moins 4 structures
circuit_t. L’allocation se fait à l’aide de la fonction malloc en lui passant le nombre d’octets à allouer, donc ici
4 fois la taille de la structure circuit_t (d’où 4 * sizeof(circuit_t)). malloc renvoie l’adresse du premier
octet de la zone allouée ou la valeur NULL en cas d’erreur. Ce dernier cas est testé par le if ligne 3.

Une fois que la mémoire allouée n’est plus utilisée, il faut la libérer à l’aide de la fonction free, à qui on
doit passer le pointeur renvoyé par la fonction malloc.

3

