
3TC31 (ex. INF107)

Exam

2024–2025

Name: .

Instructions

• Duration: 90 minutes

• No documents are allowed

• Calculators, mobile phones, and computers are prohibited

• You can answer in French or English

• You will find the signature of some useful C functions at the end of the exam sheet

• There are 3 independent parts:

– Part 1 (6 points): Questions 1 and 2 on Combinatorial logics, Questions 3 and 4 on RISC-V processor
– Part 2 (8 points): Questions 5 to 10 on the C programming language
– Part 3 (6 points): Question 11 on Files and Questions 12 and 13 on Synchronization

Part 1 (6 points / 25 minutes)
Combinatorial Logics
In the lecture, a basic combinatorial circuit has been introduced, called the multiplexer. The 2-to-1 multiplexer
selects among the input signals i0 and i1. Depending on the value of the select input s, the output o will take
on the value of i0 or i1.

Another basic circuit is the decoder. In general, it has N inputs x0, . . . , xN−1 and 2N outputs y0, . . . , y2N−1.
Its functionality can be described as follows: There is always exactly one active output (whose value is 1), where
its index corresponds to the unsigned integer represented by the input vector (xn−1 . . . x0). Below in Figures 1a
and 1b are the circuit symbols of the described circuits.

i0

i1

o

s

0

1

(a) 2-to-1 multiplexer

Decoder
x0

x1

y3

y2

y1

y0

(b) 2-to-4 decoder

i

o0

o1

o2

o3

s1 s0

(c) 1-to-4 demultiplexer

Figure 1: Circuit symbols

We now introduce a new circuit, the demultiplexer. It can be thought of as the inverse of the multiplexer.
Depending on a select input s, the value of input i will be redirected to one of the outputs oj , where j corresponds
to the value of the select inputs interpreted as an unsigned integer value. All other outputs ok with k 6= j are
equal to 0. Figure 1c shows the circuit symbol for a 1-to-4 multiplexer.

1

Question 1 (1 point)
Complete the truth table for the outputs of the 1-to-4 demultiplexer (note: you can answer directly on this
sheet but do not forget to write your name on the first page):

i s1 s0 o0 o1 o2 o3
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Question 2 (1 point)
We can actually realise the 1-to-4 demultiplexer using a 2-to-4 decoder and some additional logic gates. Draw
the corresponding circuit diagram.

RISC-V Processor
During the lecture and the lab exercises, we have studied a simple implementation of a RISC-V processor.
Figure 2 on the following page shows the data path implementing parts of the RISC-V base instruction set,
including register-to-register instructions, immediate instructions, loads, and stores.

Question 3 (2 points)
We assume that the instruction memory contains two instructions:

Address Instruction Machine code
0 sub x3, x2, x1 0x401101b3
4 lw x4, 8(x3) 0x0081a203

We assume that the data memory contains the following 32 bit words, noted in decimal:

Address Data
0 10
4 20
8 40

12 80

We assume that the registers contains the following data, noted in decimal:

Register Data
0 0
1 4
2 8
3 12
4 16

Complete the table on the following page with the values of the signals when executing these instructions. You
can use operator symbols +, −… for the ALU operation (op). Note that the appendix contains specifications of
the used instructions. If you make a mistake, cross out the line in the table and use one of the extra lines.

Note: you can answer directly on this sheet but do not forget to write your name on the first page.

2

Fi
gu

re
2:

R
IS

C
-V

da
ta

pa
th

fo
r

R
-t

yp
e,

im
m

ed
ia

te
an

d
m

em
or

y
in

st
ru

ct
io

ns

pc
in

st
r

rs
1

rs
2

rd
op

AL
Us

rc
im

m
op

1
op

2
re

s/
Ad

dr
W

D
at

a
RD

at
a

wr
ite

lo
ad

st
or

e
wr

da
ta

0
0x
40
11
01
b3

4
0x
00
81
a2
03

3

In the RISC-V ISA, the instruction jal (jump and link) is used to realise function calls: It stores the
return address (current program counter plus 4) in the given register, and then jumps to the given address. By
convention, we use the register ra to store the return address. One thing that we need to take care of before
calling a function is saving registers: The called function might overwrite register values, so we need to write
them to the memory and restore them after the function has returned. As you should know by now, we use the
stack for this. By convention, the address of the next available memory cell on the stack is found in the register
sp (stack pointer). We assume further that the stack grows from top to bottom (i.e. the stack pointer decreases
on pushing and increases on popping).

Question 4 (2 points)
Complete the following assembler program in order to save and restore the two registers s0 and s1 on the
stack before and after the function call, respectively. Give the instruction sequences that need to be inserted at
positions (1) and (2).

foo:
... // do something interesting
jr ra // jump back to return address

main:
// (1) push registers on the stack

jal ra, foo // call function foo
// (2) pop registers from stack

Part 2 (8 points / 40 minutes)
During the TP you have stored a data structure representing stars inside a linked list.
This exercise is concerned with representing and manipulating arithmetic expressions, e.g., 4 + 5, in a tree.
Contrary to a linked list, the binary operators of an arithmetic expression (here: +) have two sub-expressions
(here: 4 and 5).

Question 5 (1 point)

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[]) {
int a = 42;
int *b = &a; // L1
*b = 43; // L2
printf("a = %d\n", a); // L3
return EXIT_SUCCESS;

}

• What is the type of the variable b (line L1)?

• What is returned by the operator & (line L1)?

• What does line L2 do?

• What is printed on the standard output when this program is executed?

Question 6 (1 point)
Define an enumeration op_e with the following symbols: PLUS, MINUS, MULT, DIV, and NUM, and define
a type alias op_t to be used instead of enum op_e.

4

Question 7 (1 point)
Implement the function char_to_op, which takes a single character symbol (char) as input.
The function should convert (return) the input characters '+', '-', '*', and '/' to the respective values of
op_t (PLUS, MINUS, MULT, and DIV).
For other characters that are not valid operators print the error message "Invalid operator: " to stderr fol-
lowed by the invalid character symbol and a newline, then terminate the program using exit with an appropriate
argument.
The function is never supposed to return NUM.

Question 8 (1 point)
Define a structure expr_s, representing a node of the arithmetic expression tree.
A node holds the following information:

• op:
One of the operator symbols (PLUS, MINUS, MULT, or DIV) for binary operators or NUM when the expression
is an integer number.

• num:
A signed integer number when op has the value NUM, or 0 otherwise.

• l and r:
Pointers to sub-expressions (left and right) when op represents an operator, or NULL otherwise.

Choose an appropriate type for each structure member and define a type alias expr_t to be used instead of
struct expr_s.

Question 9 (2 points)
We suppose that we have defined 5 global variables of type expr_t with the names n4, n5, n6, p, and m, forming
the expression shown in Figure 3, as follows:

expr_t n4 = {NUM, 4, NULL, NULL};
expr_t n5 = {NUM, 5, NULL, NULL};
expr_t n6 = {NUM, 6, NULL, NULL};
expr_t m = {MULT, 0, &n4, &n5};
expr_t p = {PLUS, 0, &n6, &m};

Write a recursive function eval_expr, with the signature: int eval_expr(const expr_t *e).
This function should return the value of the expression e.

• When a node represents a number, return its value.

• When a node represents a binary operation, first evaluate the two sub-expressions (l and r). Then apply
the respective binary operator of the C language to the two values obtained for the sub-expressions, and
return the result.

You can assume that the expression passed to the function is correct. So, no error handling is required.
Example: The result of calling eval_expr(p) should compute 26.

op: PLUS num: 0 l: 0x403090 r: 0x4030b0p

op: NUM num: 6 l: NULL r: NULLn6 op: MULT num: 0 l: 0x403050 r: 0x403070m

op: NUM num: 4 l: NULL r: NULLn4 op: NUM num: 5 l: NULL r: NULLn5

Figure 3: The expression tree represented by variable p.

5

Question 10 (2 points)
Now that the data structure is in place, we want to implement a function that is able to construct an expression
tree from a string.
Complete the function parse_expr from below that takes a string as input and returns a special
data structure parse_result_t.

typedef struct
{

const char *str; // Pointer to remaining characters of string to be parsed
expr_t *e; // Node of the expression tree, parsed so far

} parse_result_t;

parse_result_t parse_expr(const char *str)
{

parse_result_t result;

// Process first character of remaining string to be parsed.
switch (*str)
{

// An operator was detected ...
case '+': case '-':
case '*': case '/':
{

// Continue parsing the left and right child sub-expression using recursive calls:
// TODO (3): provide the arguments to the recursive calls
parse_result_t l = parse_expr();
parse_result_t r = parse_expr();

// Return value: str points to the character after the right operand
// TODO (4): assign a value to result.str

// Return value: e represents the parsed expression
result.e = malloc(sizeof(expr_t));
result.e->op = char_to_op(*str);
result.e->n = 0;
result.e->l = l.e;
result.e->r = r.e;

return result;
}

// The beginning of an integer number was detected ...
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
{

// Convert character to integer number
int n = *str - '0';

// Return value: str points to the character after the digit
result.str = str + 1;

// Return value: e represents the parsed expression
// TODO (1): allocate a new expression on the heap and store it in result.e

6

// TODO (2): assign struct members of result.e (using n)

return result;
}

// Unexpected end of string: display an error
case '\0':

fprintf(stderr, "Unexpected end of expression\n");
exit(EXIT_FAILURE);

default:
fprintf(stderr, "Invalid character in expression: %c.\n", *str);
exit(EXIT_FAILURE);

}
}

The function inspects the first character of the input string, distinguishing the following cases.

• If the end of the string has been reached (case '\0'):
An error message is printed to stderr and the program is terminated.

• If an invalid character (neither a number or operator) was encountered (default:):
An error message is printed to stderr and the program is terminated.

• If a digit was encountered (case '0': … case '9':):
A new object of type expr_t is allocated on the heap and initialized accordingly. The newly allocated
object and a string pointer is returned (see result).

• If an operator character was encounter (case '+': … case '/':):
Recursive calls to parse_expr parse the left and right sub-expressions respectively. A new object of type
expr_t is allocated on the heap and initialized accordingly. The newly allocated object and a string
pointer is returned (see result).

Example: Parsing the string "+6*45" should be parsed as 6+ (4× 5) and should yield an expression tree with
the same shape as the one shown in Figure 3. In addition, Figure 4 illustrates the recursive calls to parse_expr
while parsing this string.

TODO: Complete the code of the function shown above at the TODO markers (1) through (4).

1. Allocate a new object of type expr_t on the heap and assign the obtained pointer to result.e. If the
allocation fails, print an error message using perror and terminate the program using exit.

2. Assign a value to every structure member of result.e, which is a pointer to an expr_t. Notably use the
local variable n defined a couple of lines above.

3. Provide arguments to the recursive calls of parse_expr. These arguments have to be a sub-string of the
original input string str. For the left sub-expression the argument is simply the rest of str without the
first character. For the right sub-expression the argument is obtained from the return value of the left
sub-expression. Use pointer arithmetic as needed.

4. Assign a value to result.str. The value has to be a sub-string of the original input string str, which
was not yet parsed. In other words, result.str should point to the first character after the sub-string
representing the right operand of the binary operator. See Figure 4 for an illustration.

7

parse_expr("+6*45")

parse_expr("6*45")

parse_expr("*45")

parse_expr("45")

parse_expr("5")

'+' '6' '*' '4' '5' '\0'

'+' '6' '*' '4' '5' '\0'

'+' '6' '*' '4' '5' '\0'

'+' '6' '*' '4' '5' '\0'

'+' '6' '*' '4' '5' '\0'

Figure 4: Recursive calls to parse_expr while parsing the string "+6*45". The function arguments illustrate
the remaining characters to parse using arrows () below the boxes. The arrows () above the boxes indicate
the string pointer returned.

Part 3 (6 points / 25 minutes)
Question 11 (3 points)
We want to implement a program that reverses a file as the reverse would do in Python. The first byte is
swapped with the last, the second with the next to last, and so on. A file containing “12345” becomes a file
containing “54321”. This exercise is very close to what was implemented in TP12 (fs-edit-file). We give an
outline of the code below to start with. The swap_bytes function swaps two bytes in the file, the first being
the byte number offset from the beginning of the file and the second being the byte number offset from the
end of the file. If the parameter offset exceeds half the file size, the swap_bytes function returns 0; otherwise
it returns 1. Complete the code below.

#include <assert.h>
#include <fcntl.h>
#include <stdlib.h>
#include <unistd.h>

int swap_bytes(int fd, int offset);

int main(int argc, char *argv[]) {
int fd;
if (argc != 2) return;

// TODO

for (int offset = 1; swap_bytes(fd, offset); offset++);

// TODO

}

int swap_bytes(int fd, int offset) {
int rv;
char left, right;

// TODO

return 0;

8

// TODO

return 1;
}

Question 12 (1 point)
(Synchronization problem (1).) Two concurrent threads, T1 and T2, execute, respectively, computations C1 and
C2 at some point during their execution. We want to make sure that computation C2 does not begin before C1

has finished.
Complete the following pseudo-code skeletons with the correct use of synchronization tools (semaphores

and/or mutexes) to ensure that is the case.
Note: the annex contains a list of function signatures to manipulate semaphores and mutexes.

initialization() {
// Write here initialization code (e.g., semaphores/mutex initialization ,
// but also global variables) shared by all participating threads.

}

T1() {

C1;

}

T2() {

C2;

}

9

Question 13 (2 points)
(Synchronization problem (2).) Two concurrent threads, T1 and T2, execute 3 computations: T1 executes C1

and later C3; T2 executes C2. We want to make sure that the 3 computations execute in the order: C1, C2, C3

where each computation does not start before the previous has finished. Additionally, T2 should wait for C3 to
complete before terminating (so that T1 and T2 will terminate at around the same time).

Complete the following pseudo-code skeletons with the correct use of synchronization tools (semaphores
and/or mutexes) to ensure that is the case.

Note: the annex contains a list of function signatures to manipulate semaphores and mutexes.

initialization() {
// Write here initialization code (e.g., semaphores/mutex initialization ,
// but also global variables) shared by all participating threads.

}

T1() {

C1;

C3;

print("Bye.");
}

T2() {

C2;

print("Bye.");
}

Annex: signatures of useful C functions
• void *memset(void *ptr, int value, size_t num);

Fills the first num bytes of the memory area pointed to by ptr, returns ptr.
• int memcmp(const void *ptr1, const void *ptr2, size_t num);

Compares num bytes of the memory areas prt1 and ptr2; returns 0 when all the bytes are the same.
• void *memcpy(void *dst, const void *src, size_t num);

Copies num bytes from memory area src to memory area dst; returns dst.

• char *strncpy(char *dst, const char *src, size_t sz);
Copies up to sz characters from the string src to dst, stopping at the null character; returns dst.

• size_t strlen(const char *s);
Calculates the length of the string pointed to by s.

• void *malloc(size_t size);
Allocates size bytes on the heap and returns a pointer to the allocated memory.

10

• void *realloc(void *ptr, size_t size);
Changes the size of the memory block pointed to by ptr to size bytes. If ptr is NULL behaves like malloc.
May invalidate the pointer ptr and, in all cases, returns a pointer to the reallocated memory region. The
content of the memory area originally pointed to by ptr is preserved.

• void free(void *ptr);
Frees the memory space pointed to by ptr, which has to be allocated by malloc or realloc beforehand.

• void perror(const char *s);
Produces a message on stderr describing the last error encountered during a call to a C library function.

• void exit(int status);
Causes normal process termination with an exit code status.

• ssize_t read(int fildes, void *buf, size_t nbyte);
Attempt to read nbyte bytes from the file associated with the file descriptor fildes into the buffer pointed
to by buf; returns the number of bytes actually read, 0 when the end-of-file (EOF) was reached, or -1 in
case of an error.

• ssize_t write(int fildes, const void *buf, size_t nbyte);
Attempt to write nbyte bytes from the buffer pointed to by buf to the file associated with the file descriptor
fildes; returns the number of bytes actually written or -1 in case of an error.

• int pipe(int fildes[2]);
Create a pipe and place two file descriptors into fildes[0] and fildes[1]; return 0 on success or -1 on
error.

• int open(const char *path, int oflag, ...);
The file name specified by path is opened for reading and/or writing, as specified by the argument oflag;
the file descriptor is returned to the calling process.

• int close(int fd);
The close() call deletes the descriptor fd from the per-process object reference table.

• off_t lseek(int fd, off_t offset, int whence);
The lseek() function repositions the offset of the file descriptor fd to the argument offset, according to
the directive whence. Upon successful completion, lseek() returns the resulting offset location as measured
in bytes from the beginning of the file. Otherwise, a value of -1 is returned. lseek() repositions the file
pointer as follows:

– If whence is SEEK_SET, the offset is set to offset bytes.
– If whence is SEEK_CUR, the offset is set to its current location plus offset bytes.
– If whence is SEEK_END, the offset is set to the size of the file plus offset bytes.

• pid_t fork(void);
Create a new process by copying the current process; returns 0 in the child process; returns the process
id of the child process or -1 in case of an error in the parent process.

• pid_t wait(int *status);
Blocks the current process until one of its child processes terminates; returns the process id of the child
or -1 in case of an error. Also returns the exit status of the child via the pointer status. If status is
NULL no exit code is returned.

• int execvp(const char *file, char *const argv[]);
Replace the current process image with a new process image loaded from the executable file with name
file, passing the table argv as command-line arguments to the new process image; returns -1 in case of
an error.

Annex: (pseudo-code) signatures of synchronization tool functions

/* functions available on a semaphore sem */
init_sem(semaphore sem, unsigned int n);
wait(semaphore sem);
signal(semaphore sem);

11

/* functions available on a mutex mtx */
init_mtx(mutex mtx); // initially unlocked
lock(mutex mtx);
release(mutex mtx);

Annex: RISC-V Instructions
add (addition)
Format add rd, rs1, rs2

Description Adds the register rs2 to rs1 and stores the result in rd.

addi (immediate addition)
Format addi rd, rs1, imm

Description Adds the register rs1 to the sign extended immediate value imm and stores the result in rd.

sub (subtraction)
Format sub rd, rs1, rs2

Description Subtracts the register rs2 from rs1 and stores the result in rd.

lw (load word)
Format lw rd, offs(rs1)

Description Loads a 32-bit value from memory and stores it in register rd. The address is computed as the
sum of register rs1 and constant offset offs.

sw (store word)
Format sw rs2, offs(rs1)

Description Stores a 32-bit value from register rs2 to the memory. The address is computed as the sum of
register rs1 and constant offset offs.

jal (jump and link)
Format jal rd, offs

Description Stores the return address (PC + 4) in register rd and jumps to the target address by adding offs
to the current PC.

12

