
3TC31 (ex. INF107)

Examen final

2025–2026

Instructions
— Durée : 1h30
— Document autorisé : 1 feuille A4 manuscrite recto-verso uniquement
— Dispositifs électroniques (calculatrice, ordinateur...) interdits
— Vous pouvez répondre en français ou en anglais
— Ce sujet contient trois parties indépendantes
— Répondez aux différentes questions sur une copie (pas sur le sujet)

Partie 1 (3 points / 15 minutes)
Question 1 (0.5 points)

Quelle est la valeur, en décimal, du nombre représenté en complément à 2 sur 5 bits par la valeur 10000 ?

Question 2 (1 point)
À partir d’une bascule D (D flip-flop) et de portes logiques élémentaires, dessinez le schéma d’un circuit

ayant trois entrées D, clk et enable et une sortie Q et le comportement suivant :
— Si enable vaut 1, lors d’un front montant de l’horloge clk, Q prend la valeur de D
— Le reste du temps, Q conserve sa valeur précédente

Question 3 (1 point)
Soit le circuit suivant :

F G H

On suppose que F , G et H sont des fonctions combinatoires et que toutes les bascules fonctionnent sur la
même horloge.

On suppose les temps suivants :
— temps de propagation dans F : 4 ns
— temps de propagation dans G : 4 ns
— temps de propagation dans H : 3 ns
— temps de propagation dans les bascules (tco) : 1 ns
— temps de pré-positionnement des bascules (tsu) : 1 ns
Quelle est la fréquence maximale de fonctionnement de ce circuit ?

Question 4 (0.5 points)
Soit l’instruction assembleur RISC-V addi x1, x2, 42.
— Que fait cette instruction ?
— Où est stockée la valeur 42 ?

1

Partie 2 (3 points / 15 minutes)
Question 5 (0.5 points)
Soit le programme suivant :

#include <stdlib.h>
#include <stdio.h>

int main(int argc, char *argv[]) {
int * p;
*p = 42;
printf("*p = %d\n", *p);
return EXIT_SUCCESS;

}

Que produit l’exécution de ce code ?

Question 6 (1 point)
Soit le programme suivant :

#include <stdlib.h>
#include <stdio.h>

void swap(int a, int b) {
int c = a;
a = b;
b = c;

}

int main(int argc, char *argv[]) {
int a = 1;
int b = 2;
swap(a, b);
printf("a=%d b=%d\n", a, b);
return EXIT_SUCCESS;

}

— Qu’affiche le programme ci-dessus ?
— Corrigez-le pour qu’il produise le résultat attendu (la fonction appelante doit voir la modification effectuée

par la fonction swap), sans utiliser de variables globales.

Question 7 (1.5 points)
Soit une liste chaînée dont un nœud est représenté par la structure suivante :

struct node {
int value;
struct node *next;

};

Écrivez le code de la fonction display qui prend en unique argument une liste chaînée (à vous de trouver
le type correct) et qui affiche la valeur (l’entier value) de tous les nœuds présents dans la liste, ou la chaîne
"Liste vide" si la liste est vide.

Part 3 (14 points / 60 minutes)
Cette partie est composée de 4 exercices indépendants.

2

Exercice 1 : Entrées/Sorties bas niveau
Question 8 (4 points)

On souhaite implémenter deux fonctions, read_object_at et write_object_at, permettant respectivement
de lire et d’écrire un objet de type object_t dans un fichier identifié par son descripteur fd.

Chaque objet est stocké séquentiellement dans le fichier. L’argument index indique le numéro de l’objet à
lire ou à écrire (les objets sont numérotés à partir de zéro).

Les fonctions devront utiliser exclusivement les fonctions systèmes comme open, close etc. et non pas les
fonctions de la bibliothèque standard C comme fopen, fclose, etc.

En cas d’erreurs, le processus doit s’arrêter.

/***/

typedef struct {
int id;
char name[32];
double value;

} object_t;

void read_object_at(int fd, size_t index, object_t *obj) {

// TODO / À faire

}

void write_object_at(int fd, size_t index, object_t *obj) {

// TODO / À faire

}
/***/

Exercice 2 : Processus et parallélisme
Nous considérons un fichier comme un tableau d’octets non-signés. On suppose l’existence d’une fonction

partition_file qui, à partir d’une partition entre l’index first et l’index last du fichier identifié par son
descripteur fd, retourne un index pivot. Elle crée ainsi deux sous-partitions [first, pivot] (gauche) et [pivot+
1, last] (droite).

off_t partition_file(int fd, off_t start, off_t end);

Question 9 (2 points)
Dans la fonction process_partition (voir code juste après), créez deux processus qui se chargent de pour-

suivre le partitionnement respectivement des sous-partitions gauche et droite.

Question 10 (1 point)
Faites en sorte qu’après avoir créé les deux processus, le processus qui les a créés attende leur terminaison.

/***/

void process_partition(int fd, off_t first, off_t last) {
if (last - first <= 2)

return;

off_t pivot = partition_file(fd, start, end);

// TODO / À faire (pour les deux questions)

}

3

int main(int argc, char *argv[]) {
if (argc < 4) {

fprintf(stderr, "Usage: %s fichier first last\n", argv[0]);
exit(1);

}

char *filename = argv[1];
off_t first = atoi(argv[2]);
off_t last = atoi(argv[3]);

int fd = open(filename, O_RDWR);
if (fd < 0) { perror("open"); exit(1); }

process_partition(fd, first, last);

close(fd);
return 0;

}
/***/

Exercice 3 : Ordonnancement
Question 11 (3 points)
Considérez l’ensemble suivant de processus, avec la durée de l’intervalle CPU (burst) donnée en millisecondes :

Processus Burst Priorité
P1 5 4 (plus basse)
P2 3 1 (plus haute)
P3 1 2
P4 8 2
P5 4 3

L’ordre d’arrivée est P1, P2, P3, P4, P5, tous à l’instant 0 (environ). Considérons les algorithmes de planification :
premier arrivé, premier servi (first-come first-served, FCFS), plus court d’abord (shortest job first, SJF), et
tourniquet (round robin, RR) avec q = 3 ms. Quels sont les temps d’attente de chaque processus dans chaque
cas ? (Rappel : le temps d’attente d’un processus est la quantité de temps totale passée en attente dans la file
d’attente prête.) Recopiez le tableau suivant sur votre copie avec vos réponses :

Temps d’attente (ms)
Algorithme P1 P2 P3 P4 P5

FCFS

SJF

RR, q=3

Exercice 4 : Synchronisation
Question 12 (2 points)
Deux threads, A et B, s’amusent en exécutant respectivement les bouts de pseudo code suivants :

have_fun_A() { // main function of thread A
before_party();
barrier_A(); // synchronization barrier
after_party();

}

have_fun_B() { // main function of thread B
before_party();
barrier_B(); // synchronization barrier
after_party();

}

4

Ils souhaitent faire en sorte que seulement une fois que tous les deux sont arrivés à la “barrière” de syn-
chronisation, le calcul continue. Par conséquence, aucun thread doit appeler after_party() avant que tous les
deux aient terminé d’exécuter before_party().

En utilisant les primitives de synchronisation vues en cours (et notamment : mutex lock et/ou sémaphores),
donnez les implémentations en pseudo code des fonctions barrier_A() et barrier_B() qui implémentent correc-
tement le comportement attendu. La fonction init(), dont l’implémentation est à fournir, sera exécutée avant
la création des threads et peut être utilisée pour initialiser les outils de synchronisation utilisés par barrier().

Vous trouverez en annexe les signatures des fonctions de manipulation des mutex et sémaphores.

init() {

// TODO / À faire

}

barrier_A() {

// TODO / À faire

}

barrier_B() {

// TODO / À faire

}

Question 13 (2 points)
Nous souhaitons généraliser la solution au problème précèdent pour permettre à N > 1 threads de se

synchroniser de la même manière. Chaque thread exécute maintenant le même pseudo code suivant :

have_fun() { // main function of each of the N threads
before_party()
barrier() // synchronization barrier
after_party()

}

Le comportement attendu est maintenant le suivant : seulement une fois que tous les threads sont arrivés à
la barrière de synchronisation (fonction barrier), le calcul peut continuer. Dit autrement : aucun thread doit
appeler after_party() avant que tous les threads aient terminé l’exécution de before_party().

Donnez les implémentations en pseudo code des fonctions barrier() et init() qui respectent ce compor-
tement.

init() {

// TODO / À faire

}

barrier() {

// TODO / À faire

}

Annexe : signature des fonctions usuelles en C
— void *memset(void *ptr, int value, size_t num);

Fills the first num bytes of the memory area pointed to by ptr, returns ptr.
— int memcmp(const void *ptr1, const void *ptr2, size_t num);

Compares num bytes of the memory areas prt1 and ptr2 ; returns 0 when all the bytes are the same.

5

— void *memcpy(void *dst, const void *src, size_t num);
Copies num bytes from memory area src to memory area dst ; returns dst.

— char *strncpy(char *dst, const char *src, size_t sz);
Copies up to sz characters from the string src to dst, stopping at the null character ; returns dst.

— size_t strlen(const char *s);
Calculates the length of the string pointed to by s.

— void *malloc(size_t size);
Allocates size bytes on the heap and returns a pointer to the allocated memory.

— void *realloc(void *ptr, size_t size);
Changes the size of the memory block pointed to by ptr to size bytes. If ptr is NULL behaves like
malloc. May invalidate the pointer ptr and, in all cases, returns a pointer to the reallocated memory
region. The content of the memory area originally pointed to by ptr is preserved.

— void free(void *ptr);
Frees the memory space pointed to by ptr, which has to be allocated by malloc or realloc beforehand.

— void perror(const char *s);
Produces a message on stderr describing the last error encountered during a call to a C library function.

— void exit(int status);
Causes normal process termination with an exit code status.

— ssize_t read(int fildes, void *buf, size_t nbyte);
Attempt to read nbyte bytes from the file associated with the file descriptor fildes into the buffer
pointed to by buf ; returns the number of bytes actually read, 0 when the end-of-file (EOF) was reached,
or -1 in case of an error.

— ssize_t write(int fildes, const void *buf, size_t nbyte);
Attempt to write nbyte bytes from the buffer pointed to by buf to the file associated with the file
descriptor fildes ; returns the number of bytes actually written or -1 in case of an error.

— int pipe(int fildes[2]);
Create a pipe and place two file descriptors into fildes[0] and fildes[1] ; return 0 on success or -1
on error.

— int open(const char *path, int oflag, ...);
The file name specified by path is opened for reading and/or writing, as specified by the argument oflag ;
the file descriptor is returned to the calling process.

— int close(int fd);
The close() call deletes the descriptor fd from the per-process object reference table.

— off_t lseek(int fd, off_t offset, int whence);
The lseek() function repositions the offset of the file descriptor fd to the argument offset, according to
the directive whence. Upon successful completion, lseek() returns the resulting offset location as measured
in bytes from the beginning of the file. Otherwise, a value of -1 is returned. lseek() repositions the file
pointer as follows :
— If whence is SEEK_SET, the offset is set to offset bytes.
— If whence is SEEK_CUR, the offset is set to its current location plus offset bytes.
— If whence is SEEK_END, the offset is set to the size of the file plus offset bytes.

— pid_t fork(void);
Create a new process by copying the current process ; returns 0 in the child process ; returns the process
id of the child process or -1 in case of an error in the parent process.

— pid_t wait(int *status);
Blocks the current process until one of its child processes terminates ; returns the process id of the child
or -1 in case of an error. Also returns the exit status of the child via the pointer status. If status is
NULL no exit code is returned.

— int execvp(const char *file, char *const argv[]);
Replace the current process image with a new process image loaded from the executable file with name
file, passing the table argv as command-line arguments to the new process image ; returns -1 in case
of an error.

Annexe : signature en pseudo-code des fonctions de synchronisation

/* functions available on a semaphore sem */

6

init_sem(semaphore sem, unsigned int n);
wait(semaphore sem);
signal(semaphore sem);

/* functions available on a mutex mtx */
init_mtx(mutex mtx); // initially unlocked
lock(mutex mtx);
release(mutex mtx);

7

