3TC31 (ex. INF107)

Examen intermédiaire (premiere partie)

20252026

Instructions

Durée : 30 minutes

Document autorisé : 1 feuille A4 recto-verso uniquement

Dispositifs électroniques (calculatrice, ordinateur...) interdits

Vous pouvez répondre en frangais ou en anglais

Ce sujet contient quelques questions de cours et deux exercices indépendants
Répondez directement sur le sujet

Questions de cours (4 points / 5 minutes)

Question 1 (2 points)

Quelle est la valeur, en décimal, du nombre représenté en complément a 2 sur 4 bits par la valeur 11117

Réponse :

Question 2 (2 points)
Expliquez le fonctionnement d’une bascule D (entrée D, sortie Q, horloge c1k).

Réponse :

Exercice 1 : Logique combinatoire (6 points / 10 minutes)

Nous cherchons & construire un opérateur prenant en entrée deux nombres A et B non signés représentés
chacun sur n bits, et ayant une sortie S sur n bits telle que S = A si A > B, sinon S = B (autrement dit, cet
opérateur renvoie la plus grande des deux entrées).

Pour comparer deux nombres non signés A et B (et donc renvoyer le plus grand des deux), il faut tout
d’abord comparer leurs bits de poids fort (A,_1 et B,_1). S’ils sont différents, on peut déterminer le nombre le
plus grand. S’ils sont identiques, il faut répeter opération sur les bits suivants A, o et B,,_s et ainsi de suite.

Comme pour I'addition & propagation de retenue vue en cours, il est donc possible de réaliser cet opérateur
en chainant n opérateurs élémentaires (cf. figure 1). L’opérateur élémentaire numéro ¢ (avec 0 < ¢ < n) prend
en entrée les bits i de A et B et produit le bit ¢ de S.

L’opérateur élémentaire numéro i recoit en plus en entrée depuis 'opérateur 7 + 1 les signaux :

— Fasp : 1 sila comparaison des bits de poids forts (de n — 1 & i + 1) a déja permis de déterminer que

A > B, 0 dans le cas contraire
— FEa<p : 1 sila comparaison des bits de poids forts (de n — 1 & i + 1) a déja permis de déterminer que
A < B, 0 dans le cas contraire

Enfin, opérateur élémentaire numéro 4 produit les sorties suivantes & destination de I'opérateur élémentaire
t—1:
— Sasp : 1sila comparaison des bits de poids forts (de n — 1 & i) a déja permis de déterminer que A > B,
0 dans le cas contraire
— Sa<p : 1sila comparaison des bits de poids forts (de n —1 &) a déja permis de déterminer que A < B,
0 dans le cas contraire

An—lBu—l AWL—ZBH—Z Al Bl Al) BU

Ai B Ai B; Ai B; Ai B;
0 — Easp Sasp [—| Easp Sasp —> —N Easp Sasp | Easp Sasp —>
— —

0 — Ea<p Sa<p [— Ea<p Sa<n Eac<p Sa<p) Ea<p Sa<p [—>
Si Si Si Si

Sn—1 Sp—2 Sy So

FIGURE 1 — Opérateur complet a partir des opérateurs élémentaires

Question 3 (3 points)

Complétez la table de vérité pour I'opérateur élémentaire sur 1 bit. Comme le cas Eosp = Facp = 1 n’est
pas censé arriver, on ne le représentera pas dans le tableau (vous pourrez par la suite donner les valeurs que
vous voulez aux sorties dans ce cas).

Eixop Eacp | Ai Bi | Si | Sasp | Sa<s
0 0 0O O
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0O 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 O
1 0 0 1
1 0 1 0
1 0 1 1

Question 4 (3 points)

Donnez les équations logiques des sorties S;, Sasp et Sa<p en fonction des entrées Fasp, Eacp, A; et B;
(et des opérateurs logiques élémentaires vus en cours : + pour le OU logique, - pour le ET logique, & pour le
OU exclusif, € pour le complément de e).

Si —
Sasp =

SA<B -

Exercice 2 : Processeur RISC-V (10 points / 15 minutes)

La figure 2 rappelle le chemin de données (data path) de I'implémentation vue en cours du
jeu d’instructions de base RISC-V permettant de traiter les instructions registre-vers-registre,

les instructions immédiates, les chargements (loads) et stockages (stores). Pour simplifier, la
partie traitement des instructions de saut n’est pas représentée.

Vous trouverez également en annexe (voir derniére page du sujet) la description de quelques
Instructions.

Question 5 (8 points)

On suppose que la mémoire d’instructions (instruction memory) contient deux instructions :

Adresse Instruction Code machine
0 addi x3, x2, 2 0x00210193
4 sw x4, 2(x3) 0x0041A123

On suppose que la mémoire de données (data memory) contient les mots de 32 bits suivants,
représentés en décimal :

Adresse Donnée

0 10
4 20
8 40
12 80

Enfin, on suppose que les registres contiennent les valeurs suivantes, représentées en décimal :

Registre Valeur

0 0
1 4
2 8
3 12
4 16

Compléter les deux premieres lignes du tableau de la page 5 avec les valeurs des
différents signaux internes du processeur pendant ’exécution des deux instructions.
Vous pouvez utiliser les symboles +, —... pour représenter I'opération effectuée par ’ALU (op).
Si la valeur d’un signal n’a pas d’impact (et que vous en étes sir), vous pouvez inscrire x. Si
vous faites une erreur, n’hésitez pas a barrer proprement et a utiliser les lignes supplémentaires
du tableau.

Question 6 (2 points)

Ecrivez le code assembleur équivalent & linstruction C : i = i + 1;

Pour cette question, on supposera que :

— 1 est une variable entiere sur 32 bits

— 1 est stockée dans la mémoire de données a 'adresse 20 (en base 10)

— Le reste du contenu de la mémoire de données est inconnu

— L’état initial des registres est inconnu (a 'exception de r0O qui vaut toujours 0)

— Vous pouvez utiliser tous les registres (leurs valeurs initiales n’ont pas besoin d’étre conser-
vées)

PC

pc

v

Imem

instr

store op
rsi

rs2

rd

Decode

write

imm

load ALUsrc

A 4

v

v

v

i rd data 1
GERE rd data 2
wr idx

Register

File
write
wrdata
A

ALU

Addr

WData

store

DMem

RData

res

FIGURE 2 — RISC-V data path pour les instructions de type R, immédiates et mémoires

o
A

res

/

pc | instr rsl| rs2| rd | op | ALUsrc | imm opl op2 Addr WData RData write | load | store | wrdata
0 | 0x00210193
4 | 0x0041A123

Annexe : Instructions RISC-V (liste non exhaustive)

add (addition)

Format add rd, rsil, rs2

Description Additionne le contenu du registre rs2 au contenu du registre rsi et stocke le
résultat dans le registre rd.

addi (immediate addition)

Format addi rd, rsl, imm

Description Additionne le contenu du registre rsi avec la valeur immédiate imm (étendue
de maniére signée sur 32 bits) et stocke le résultat dans le registre rd.

sub (subtraction)

Format sub rd, rsil, rs2

Description Soustrait le contenu du registre rs2 au contenu du registre rsi et stocke le
résultat dans le registre rd. stores the result in rd.

lw (load word)
Format 1w rd, offs(rsil)

Description Charge une valeur de 32 bits depuis la mémoire et la stocke dans le registre
rd. L’adresse de la donnée chargée est la somme du contenu du registre rsi et de la
constante immédiate offs.

sw (store word)

Format sw rs2, offs(rsil)

Description Stocke la valeur du registre rs2 en mémoire. L’adresse est la somme du contenu
du registre rs1 et de la constante immédiate offs.

