
3TC31 (ex. INF107)

Examen intermédiaire (première partie)

2025–2026

Nom : .

Prénom : .

Instructions
— Durée : 30 minutes
— Document autorisé : 1 feuille A4 recto-verso uniquement
— Dispositifs électroniques (calculatrice, ordinateur...) interdits
— Vous pouvez répondre en français ou en anglais
— Ce sujet contient quelques questions de cours et deux exercices indépendants
— Répondez directement sur le sujet

Questions de cours (4 points / 5 minutes)
Question 1 (2 points)

Quelle est la valeur, en décimal, du nombre représenté en complément à 2 sur 4 bits par la valeur 1111 ?

Réponse :

Question 2 (2 points)
Expliquez le fonctionnement d’une bascule D (entrée D, sortie Q, horloge clk).

Réponse :

Exercice 1 : Logique combinatoire (6 points / 10 minutes)
Nous cherchons à construire un opérateur prenant en entrée deux nombres A et B non signés représentés

chacun sur n bits, et ayant une sortie S sur n bits telle que S = A si A > B, sinon S = B (autrement dit, cet
opérateur renvoie la plus grande des deux entrées).

Pour comparer deux nombres non signés A et B (et donc renvoyer le plus grand des deux), il faut tout
d’abord comparer leurs bits de poids fort (An−1 et Bn−1). S’ils sont différents, on peut déterminer le nombre le
plus grand. S’ils sont identiques, il faut répeter l’opération sur les bits suivants An−2 et Bn−2 et ainsi de suite.

Comme pour l’addition à propagation de retenue vue en cours, il est donc possible de réaliser cet opérateur
en chaînant n opérateurs élémentaires (cf. figure 1). L’opérateur élémentaire numéro i (avec 0 6 i < n) prend
en entrée les bits i de A et B et produit le bit i de S.

L’opérateur élémentaire numéro i reçoit en plus en entrée depuis l’opérateur i+ 1 les signaux :
— EA>B : 1 si la comparaison des bits de poids forts (de n − 1 à i + 1) a déjà permis de déterminer que

A > B, 0 dans le cas contraire
— EA<B : 1 si la comparaison des bits de poids forts (de n − 1 à i + 1) a déjà permis de déterminer que

A < B, 0 dans le cas contraire

1

Enfin, l’opérateur élémentaire numéro i produit les sorties suivantes à destination de l’opérateur élémentaire
i− 1 :

— SA>B : 1 si la comparaison des bits de poids forts (de n− 1 à i) a déjà permis de déterminer que A > B,
0 dans le cas contraire

— SA<B : 1 si la comparaison des bits de poids forts (de n− 1 à i) a déjà permis de déterminer que A < B,
0 dans le cas contraire

An−1

Ai

Bn−1

Bi

Si

Sn−1

EA>B

EA<B

SA>B

SA<B

0

0

An−2

Ai

Bn−2

Bi

Si

Sn−2

EA>B

EA<B

SA>B

SA<B

...

A1

Ai

B1

Bi

Si

S1

EA>B

EA<B

SA>B

SA<B

A0

Ai

B0

Bi

Si

S0

EA>B

EA<B

SA>B

SA<B

Figure 1 – Opérateur complet à partir des opérateurs élémentaires

Question 3 (3 points)
Complétez la table de vérité pour l’opérateur élémentaire sur 1 bit. Comme le cas EA>B = EA<B = 1 n’est

pas censé arriver, on ne le représentera pas dans le tableau (vous pourrez par la suite donner les valeurs que
vous voulez aux sorties dans ce cas).

EA>B EA<B Ai Bi Si SA>B SA<B

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1

Question 4 (3 points)
Donnez les équations logiques des sorties Si, SA>B et SA<B en fonction des entrées EA>B , EA<B , Ai et Bi

(et des opérateurs logiques élémentaires vus en cours : + pour le OU logique, · pour le ET logique, ⊕ pour le
OU exclusif, e pour le complément de e).

Si =

SA>B =

SA<B =

Exercice 2 : Processeur RISC-V (10 points / 15 minutes)

La figure 2 rappelle le chemin de données (data path) de l’implémentation vue en cours du
jeu d’instructions de base RISC-V permettant de traiter les instructions registre-vers-registre,

2

les instructions immédiates, les chargements (loads) et stockages (stores). Pour simplifier, la
partie traitement des instructions de saut n’est pas représentée.

Vous trouverez également en annexe (voir dernière page du sujet) la description de quelques
instructions.

Question 5 (8 points)

On suppose que la mémoire d’instructions (instruction memory) contient deux instructions :

Adresse Instruction Code machine
0 addi x3, x2, 2 0x00210193
4 sw x4, 2(x3) 0x0041A123

On suppose que la mémoire de données (data memory) contient les mots de 32 bits suivants,
représentés en décimal :

Adresse Donnée
0 10
4 20
8 40
12 80

Enfin, on suppose que les registres contiennent les valeurs suivantes, représentées en décimal :

Registre Valeur
0 0
1 4
2 8
3 12
4 16

Compléter les deux premières lignes du tableau de la page 5 avec les valeurs des
différents signaux internes du processeur pendant l’exécution des deux instructions.
Vous pouvez utiliser les symboles +, −… pour représenter l’opération effectuée par l’ALU (op).
Si la valeur d’un signal n’a pas d’impact (et que vous en êtes sûr), vous pouvez inscrire x. Si
vous faites une erreur, n’hésitez pas à barrer proprement et à utiliser les lignes supplémentaires
du tableau.

Question 6 (2 points)

Écrivez le code assembleur équivalent à l’instruction C : i = i + 1;
Pour cette question, on supposera que :
— i est une variable entière sur 32 bits
— i est stockée dans la mémoire de données à l’adresse 20 (en base 10)
— Le reste du contenu de la mémoire de données est inconnu
— L’état initial des registres est inconnu (à l’exception de r0 qui vaut toujours 0)
— Vous pouvez utiliser tous les registres (leurs valeurs initiales n’ont pas besoin d’être conser-

vées)

3

Figure 2 – RISC-V data path pour les instructions de type R, immédiates et mémoires

4

pc instr rs1 rs2 rd op ALUsrc imm op1 op2 res /
Addr WData RData write load store wrdata

0 0x00210193

4 0x0041A123

5

Annexe : Instructions RISC-V (liste non exhaustive)

add (addition)

Format add rd, rs1, rs2
Description Additionne le contenu du registre rs2 au contenu du registre rs1 et stocke le

résultat dans le registre rd.

addi (immediate addition)

Format addi rd, rs1, imm
Description Additionne le contenu du registre rs1 avec la valeur immédiate imm (étendue

de manière signée sur 32 bits) et stocke le résultat dans le registre rd.

sub (subtraction)

Format sub rd, rs1, rs2
Description Soustrait le contenu du registre rs2 au contenu du registre rs1 et stocke le

résultat dans le registre rd. stores the result in rd.

lw (load word)

Format lw rd, offs(rs1)
Description Charge une valeur de 32 bits depuis la mémoire et la stocke dans le registre

rd. L’adresse de la donnée chargée est la somme du contenu du registre rs1 et de la
constante immédiate offs.

sw (store word)

Format sw rs2, offs(rs1)
Description Stocke la valeur du registre rs2 en mémoire. L’adresse est la somme du contenu

du registre rs1 et de la constante immédiate offs.

6

