3TC31 (ex. INF107)

Examen intermédiaire (deuxiéme partie)

20252026

Instructions

— Durée : 30 minutes

— Document autorisé : 1 feuille A4 recto-verso uniquement

— Dispositifs électroniques (calculatrice, ordinateur...) interdits

— Vous pouvez répondre en frangais ou en anglais

— Ce sujet contient quelques questions de cours et deux exercices indépendants
— Répondez directement sur le sujet

Exercice 1 : Questions de cours (4 points / 4 minutes)

Question 1 (2 points)

Quel est le lien entre la durée de vie (storage duration) d’une variable et la zone de la mémoire dans laquelle
cette variable est stockée ? Reliez les cases correspondantes :

O Données globales (Global Data)
Variable locale (Automatic Storage Duration) O O Code machine (Machine Code)
Variable globale (Static Storage Duration) O (O Tas (Heap Data)
O La pile (Stack Data)

Question 2 (2 points)

int main(int argc, char *argv[]) {
int a = 4;
int *b = &a;

*b = 5;
return EXIT_SUCCESS;

Juste avant la fin du programme (juste avant le return) :
Que contient la variable a ?

Que contient la variable b7

Exercice 2 : Questions de cours (16 points / 26 minutes)

Nous développerons un simulateur simple de logique séquentielle, capable de simuler des circuits composés
de portes NON (NOT) et OU exclusif (XOR), de bascules D (D flip flop) et de fils représentant les valeurs 0 ou 1.

Question 3 (2 points)

Pour distinguer le type des différents composants a simuler, on souhaite définir une énumération pouvant
prendre les valeurs suivantes :

— ZERO : un fil représentant 0

— ONE : un fil représentant 1

— NOT : la sortie d’une porte NON

— XOR : la sortie d’'une porte OU exclusif

— REG : la sortie d’une bascule D (D flip flop)
Donnez la définition de cette énumération et faites en sorte de pouvoir I'utiliser sous le type kind_t :

Question 4 (4 points)

On souhaite définir une structure regroupant les informations d’un composant a simuler et qui contient les
membres suivants :

— Un membre kind qui représente le type du composant (voir kind_t).

— Deux membres de type booléen avec les noms value et next_value.

— Un membre inputs qui est un tableau de 2 pointeurs vers d’autres composants du circuit.
Donnez la définition de cette structure et faites en sorte de pouvoir 1'utiliser sous le type circuit_t :

Question 5 (4 points)

Implémentez la fonction step_combinational(circuit_t *c) qui, en fonction du composant pointé par

— Pour un fil représentant 0, renvoie 0.

— Pour un fil représentant 1, renvoie 1.

— Pour une bascule D (D flip flop), renvoie sa valeur value.

— Pour une porte NON (NOT), appelle récursivement step_combinational sur sa premiére entrée
(inputs[0]) puis renvoie I'opposé de cette valeur.

— Pour une porte OU exclusif (XOR), appelle récursivement step_combinational sur ses deux entrées
(inputs[0] et inputs[1]) puis renvoie le XOR de ces deux valeurs.

Vous utiliserez de préférence une construction switch sur la valeur de la variable c.

// Evaluate the wvalue of a circuit element
_Bool step_combinational (circuit_t *c) {
// Provide your code below (using a switch!)...

Question 6 (2 points)

Fournissez les arguments a la fonction printf du code suivant, qui parcourt le tableau ¢ de n composants
d’un circuit. Pour tous les composants qui représentent une bascule D, la fonction est censée afficher les
valeurs (voir circuit_t) de la bascule (value) a ’écran sous forme d’un unique caractére, soit le caractere t
soit le caractere f.

Complétez le code suivant (& 'endroit des ___) :

// Print the current value of each register on the screen:
void print_regs(circuit_t c[], unsigned int n) {

for(unsigned int i = 0; i < n; i++) {
if (c[i].kind == REG)
printf("___", clil.value ? ___ : ___); // 3z answers at the ___
}

printf ("\n");
}

Question 7 (4 points)

Complétez la fonction main en allouant un tableau sur le tas. Déterminez le nombre d’éléments
que le tableau doit contenir en examinant le code. Vérifiez les erreurs. Affichez un message d’erreur ex-
plicite si une erreur survient. Enfin, n’oubliez pas de libérer la mémoire du tas avant de quitter le programme.

// Function to simulate a clock tick:
void step_circuit(circuit_t c[], unsigned int n) {
// Compute mnezxzt wvalue of each register

for(unsigned int i = 0; i < n; i++) {
if (c[i].kind == REG)
c[i] .next_value = step_combinational(c[i].inputs[0]);

}

// Copy next wvalue of each register into its wvalue field.

for(unsigned int i = 0; i < n; i++) {
if (c[i].kind == REG)
c[i]l.value = c[i].next_value;
}

}

int main(int argc, char xargv[]) {
// Provide your code below
circuit_t *c =

// Create 4 circuit elements for a simple 2-bit counter:

circuit_t *not = &c[0], *xor = &c[1], *regld = &c[2], *regl = &c[3];
mk_not (not , regl);

mk_xor (xor , regO, regl);

mk_reg(regl, not);

mk_reg(regl, xor);

// Simulate the 4 circuit elements for 5 clock ticks:
for(unsigned int i = 0; i < 5; i++) {

print_regs(c, 4);

step_circuit(c, 4);

}

// Provide your code below (if needed)

return EXIT_SUCCESS;

